61 research outputs found

    Overcoming the toxicity of membrane peptide expression in bacteria by upstream insertion of Asp-Pro sequence

    Get PDF
    AbstractTransmembrane (TM) peptides often induce toxic effects when expressed in bacteria, probably due to membrane destabilization. We report here that in the case of the TM domains of hepatitis C virus (HCV) E1 and E2 envelope proteins, which are both particularly toxic for the bacteria, the insertion of the Asp-Pro (DP) sequence dramatically reduced their toxicities and promoted their expressions when produced as glutathione S-transferase (GST) GST-DP-TM chimeras. Subcellular fractionation showed that these chimeras co-sediment with the membrane fraction and contain active GST that could be solubilized with a mild detergent. Surprisingly, immuno-gold electron microscopy clearly showed that such chimeras are not localized in the membrane but in the cytosol. We thus postulate that they likely form proteo-lipidic aggregates, which prevent the bacteria from toxicity by sequestering the TM part of the chimeras. The reduction of toxicity in the presence of the Asp-Pro sequence is possibly due to Asp's negative charge that probably disadvantages the binding of the TM peptides to the membrane. In addition, the structural features of Pro residue could promote the formation of chimera aggregates

    Metal binding to ligands: cadmium complexes with glutathione revisited.

    No full text
    We studied the interaction of gamma-L-glutamyl-L-cysteinyl-glycine (glutathione, GSH) with cadmium ions (Cd(2+)) by first performing classical potentiometric pH titration measurements and then turning to additional spectroscopic methods. To estimate the residual concentrations of free cadmium, we studied the competition of glutathione with a Cd(2+)-sensitive dye, either an absorbing dye (murexide) or a fluorescent one (FluoZin-1), and consistent results were obtained with the two dyes. In KCl-containing Tes, Mops, or Tris buffer at pH 7.0 to 7.1 and 37 degrees C (and at a total Cd(2+) concentration of 0.01 mM), results suggest that free cadmium concentration is halved when the concentration of glutathione is approximately 0.05 mM; this mainly reflects the combined apparent dissociation constant for the Cd(glutathione) 1:1 complex under these conditions. To identify the other complexes formed, we used far-UV spectroscopy of the ligand-to-metal charge transfer absorption bands. The Cd(glutathione)(2) 1:2 complex predominated over the 1:1 complex only at high millimolar concentrations of total glutathione and not at low submillimolar concentrations of total glutathione. The apparent conditional constants derived from these spectroscopy results made it possible to discriminate between sets of absolute constants that would otherwise have simulated the pH titration data similarly well in this complicated system. Related experiments showed that although the Cl(-) ions in our media competed (modestly) with glutathione for binding to Cd(2+), the buffers we had chosen did not bind Cd(2+) significantly under our conditions. Our experiments also revealed that Cd(2+) may be adsorbed onto quartz or glass vessel walls, reducing the accuracy of theoretical predictions of the concentrations of species in solution. Lastly, the experiments confirmed the rapid kinetics of formation and dissociation of the UV-absorbing Cd(glutathione)(2) 1:2 complexes. The methods described here may be useful for biochemists needing to determine conditional binding constants for charge transfer metal-ligand complexes under their own conditions

    Expression in Saccharomyces cerevisiae and Purification of a Human Phospholipid Flippase

    No full text
    International audienceMembrane proteins (MPs) are challenging to study from a biochemical standpoint owing to the difficulties associated with the isolation of these proteins from the membranes they are embedded in. Even for the expression of closely-related homologues, protocols often require to be adjusted. Prominently, the solubilization step and the stabilization of recombinant proteins during the purification process are key issues, and remain a serious bottleneck. Here, we present a method for the expression and the purification of the human ATP8B1/CDC50A lipid flippase complex. Selection of the right Saccharomyces cerevisiae strain proved to be a critical step for the successful purification of this complex. Likewise, the use of cholesteryl hemisuccinate, a cholesterol analogue, contributed to significantly increase the yield of purification. We hope that the simple method described here can help researchers to succeed in the expression of other mammalian difficult-to-express lipid flippases and, by extension, help in the production of other membrane proteins whose isolation has so far proven difficult

    On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport.

    No full text
    International audiencePhospholipid flippases are key regulators of transbilayer lipid asymmetry in eukaryotic cell membranes, critical to many trafficking and signaling pathways. P4-ATPases, in particular, are responsible for the uphill transport of phospholipids from the exoplasmic to the cytosolic leaflet of the plasma membrane, as well as membranes of the late secretory/endocytic pathways, thereby establishing transbilayer asymmetry. Recent studies combining cell biology and biochemical approaches have improved our understanding of the path taken by lipids through P4-ATPases. Additionally, identification of several protein families catalyzing phospholipid 'scrambling', i.e. disruption of phospholipid asymmetry through energy-independent bi-directional phospholipid transport, as well as the recent report of the structure of such a scramblase, opens the way to a deeper characterization of their mechanism of action. Here, we discuss the molecular nature of the mechanism by which lipids may 'flip' across membranes, with an emphasis on active lipid transport catalyzed by P4-ATPases. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon

    Coordinated Overexpression in Yeast of a P4-ATPase and Its Associated Cdc50 Subunit: The Case of the Drs2p/Cdc50p Lipid Flippase Complex.

    No full text
    International audienceStructural and functional characterization of integral membrane proteins requires milligram amounts of purified sample. Unless the protein you are studying is abundant in native membranes, it will be critical to overexpress the protein of interest in a homologous or heterologous way, and in sufficient quantities for further purification. The situation may become even more complicated if you chose to investigate the structure and function of a complex of two or more membrane proteins. Here, we describe the overexpression of a yeast lipid flippase complex, namely the P4-ATPase Drs2p and its associated subunit Cdc50p, in a coordinated manner. Moreover, we can take advantage of the fact that P4-ATPases, like most other P-type ATPases, form an acid-stable phosphorylated intermediate, to verify that the expressed complex is functional

    Deciphering the Mechanism of Inhibition of SERCA1a by Sarcolipin Using Molecular Simulations

    No full text
    International audienceSERCA1a is an ATPase calcium pump that transports Ca 2+ from the cytoplasm to the sarco/endoplasmic reticulum lumen. Sarcolipin (SLN), a transmembrane peptide, regulates the activity of SERCA1a by decreasing its Ca 2+ transport rate, but its mechanism of action is still not well-understood. To decipher this mechanism, we have performed normal mode analysis in the all-atom model, with the SERCA1a-SLN complex, or the isolated SERCA1a, embedded in an explicit membrane. The comparison of the results allowed us to provide an explanation at the atomic level for the action of SLN that is in good agreement with experimental observations. In our analyses, the presence of SLN locally perturbs the TM6 transmembrane helix and as a consequence modifies the position of D800, one of the key metal-chelating residues. Additionally, it reduces the flexibility of the gating residues, V304, and E309 in TM4, at the entrance of the Ca 2+ binding sites, which would decrease the affinity for Ca 2+ . Unexpectedly, SLN has also an effect on the ATP binding site more than 35 Ă… away, due to the straightening of TM5, a long helix considered as the spine of the protein. The straightening of TM5 modifies the structure of the P-N linker that sits above it, and which comprises the 351 DKTG 354 conserved motif, resulting in an increase of the distance between ATP and the phosphorylation site. As a consequence, the turn-over rate could be affected. All this gives SERCA1a the propensity to go toward a Ca 2+ low-affinity E2-like state in the presence of SLN and toward a Ca 2+ high-affinity E1-like state in the absence of SLN. In addition to a general mechanism of inhibition of SERCA1a regulatory peptides, this study also provides an insight into the conformational transition between the E2 and E1 states

    Inhibition by 4-hydroxynonenal (HNE) of Ca2+ transport by SERCA1a: low concentrations of HNE open protein-mediated leaks in the membrane

    No full text
    Exposure of sarcoplasmic reticulum membranes to 4-hydroxy-2-nonenal (HNE) resulted in inhibition of the maximal ATPase activity and Ca2+ transport ability of SERCA1a, the Ca2+ pump in these membranes. The concomitant presence of ATP significantly protected SERCA1a ATPase activity from inhibition. ATP binding and phosphoenzyme formation from ATP were reduced after treatment with HNE, whereas Ca2+ binding to the high-affinity sites was altered to a lower extent. HNE reacted with SH groups, some of which were identified by MALDI-TOF mass spectrometry, and competition studies with FITC indicated that HNE also reacted with Lys515 within the nucleotide binding pocket of SERCA1a. A remarkable fact was that both the steady-state ability of SR vesicles to sequester Ca2+ and the ATPase activity of SR membranes in the absence of added ionophore or detergent were sensitive to concentrations of HNE much smaller than those that affected the maximal ATPase activity of SERCA1a. This was due to an increase in the passive permeability of HNE-treated SR vesicles to Ca2+, an increase in permeability that did not arise from alteration of the lipid component of these vesicles. Judging from immunodetection with an anti-HNE antibody, this HNE-dependent increase in permeability probably arose from modification of proteins of about 150–160 kDa, present in very low abundance in longitudinal SR membranes (and in slightly larger abundance in SR terminal cisternae). HNE-induced promotion, via these proteins, of Ca2+ leakage pathways might be involved in the general toxic effects of HNE

    A robust method to screen detergents for membrane protein stabilization, revisited.

    No full text
    International audienceThis report is a follow up of our previous paper (Lund, Orlowski, de Foresta, Champeil, le Maire and Møller (1989), J Biol Chem 264:4907–4915) showing that solubilization in detergent of a membrane protein may interfere with its long-term stability, and proposing a protocol to reveal the kinetics of such irreversible inactivation. We here clarify the fact that when various detergents are tested for their effects, special attention has of course to be paid to their critical micelle concentration. We also investigate the effects of a few more detergents, some of which have been recently advertised in the literature, and emphasize the role of lipids together with detergents. Among these detergents, lauryl maltose neopentyl glycol (LMNG) exerts a remarkable ability, even higher than that of β-dodecylmaltoside (DDM), to protect our test enzyme, the paradigmatic P-type ATPase SERCA1a from sarcoplasmic reticulum. Performing such experiments for one's favourite protein probably remains useful in pre-screening assays testing various detergents

    Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca2+-ATPase

    Get PDF
    Large amounts of heterologous C-terminally his-tagged SERCAla Ca2+-ATPase were expressed in yeast using a galactose-regulated promoter and purified by Ni2+ affinity chromatography followed by Reactive red chromatography. Optimizing the number of galactose inductions and increasing the amount of Ga14p transcription factor improved expression. Lowering the temperature from 28degreesC to 18degreesC during expression enhanced the recovery of solubilized and active Ca2+-ATPase. In these conditions, a 41 yeast culture produced 100 mg of Ca2+-ATPase, 60 and 22 mg being pelleted with the heavy and light membrane fractions respectively, representing 7 and 1.7% of total proteins. The Ca2+-ATPase expressed in light membranes was 100% solubilized with L-alpha-lysophosphatidylcholine (LPC), 50% with n-dodecyl beta-D-maltoside (DM) and 25% with octaethylene glycol mono-n-dodecyl ether (C12E8). Compared to LPC, DM preserved specific activity of the solubilized Ca2+-ATPase during the chromatographic steps. Starting from 1/6 (3.8 mg) of the total amount of Ca2+-ATPase expressed in light membranes, 800 mug could be routinely purified to 50% purity by metal affinity chromatography and then 200 mug to 70% with Reactive red chromatography. The purified Ca2+-ATPase displayed the same K-m for calcium and ATP as the native enzyme but a reduced specific activity ranging from 4.5 to 7.3 mumol ATP hydrolyzed/min/mg Ca2+-ATPase. It was stable and active for several days at 4degreesC or after removal of DM with Bio-beads and storage at -80degreesC. (C) 2002 Elsevier Science B.V. All rights reserved
    • …
    corecore