7 research outputs found

    Microzooplankton composition in the winter sea ice of the Weddell Sea

    Get PDF
    Sympagic microzooplankton were studied during late winter in the northern Weddell Sea for diversity, abundance and carbon biomass. Ice cores were collected on an ice floe along three dive transects and seawater was taken from under the ice through the central dive hole from which all transects were connected. The areal and vertical microzooplankton distributions in the ice and water were compared. Abundance (max. 1300 ind. l-1) and biomass (max. 28.2 μg C l-1) were high in the ice cores and low in the water below the sea ice (max. 19 ind. l-1, 0.15 μg C l-1, respectively). The highest abundances were observed in the bottom 10 cm of the ice cores. The microzooplankton community within the sea ice comprised mainly aloricate ciliates, foraminifers and micrometazoans. In winter, microzooplankton represent an important fraction of the sympagic community in the Antarctic sea ice. They can potentially control microalgal production and contribute to particulate organic carbon concentrations when released into the water column during the ice melt in spring. Continued reduction of the sea ice may undermine the roles of microzooplankton, leading to a reduction or complete loss of diversity, abundance and biomass of these sympagic protists

    Long-term changes in abundance and diversity of tintinnids in the Gulf of Trieste (Northern Adriatic Sea)

    Get PDF
    Abundance and composition of the planktonic tintinnid ciliates were studied in the Gulf of Trieste (Northern Adriatic Sea, NE Mediterranean Sea) from July 1998 to July 2016. Tintinnids were collected biweekly-monthly from the LTER station C1 (200 m offshore, 17.5 m depth) at four depths (surface, 5 m, 10 m and 15 m). The maximum tintinnid abundance reached 4476 ind. L-1 at surface in February 2016. The tintinnid community comprised a maximum of 35 species and was dominated by the genera Stenosemella, Tintinnopsis, Codonellopsis, Salpingella and Eutintinnus. The most abundant species were Stenosemella nivalis, Tintinnopsis nana, Codonellopsis schabi, Salpingella rotundata and Eutintinnus apertus. We found a species-specific correlation with the abiotic factors considered, i.e., temperature and salinity. Temperature was positively correlated with S. rotundata and E. apertus and negatively with S. nivalis. Salinity was negatively correlated with the majority of the detected species. Agglutinated species presented winter maxima while hyaline species showed higher abundance in summer-autumn. Some key species were present over the whole period studied. Significant differences within the water column were not seen in the species composition, but were seen in the relative abundances of the same species at different depths. Stenosemella nivalis, S. ventricosa and Tintinnopsis beroidea can be considered as keystone species in the area and their possible loss can be seen as a signal of changes in the structure of the entire planktonic system

    Microzooplankton community composition in the winter sea ice of the northern Weddell Sea

    No full text
    Sympagic microzooplankton were studied during late winter in the northern Weddell Sea, for diversity, abundance and carbon biomass. Ice-cores were collected on an ice floe along three dive transects, and sea water was taken from under the ice through the central dive hole from which all transects were connected. The areal and vertical microzooplankton distributions in the ice and water were compared. They showed high abundance (max 1183 ind. L-1) and biomass (max 28 µg C L-1) in the ice-cores, and were low in the water, below sea ice (maxima, 19 ind. L-1; 0.15 µg C L-1, respectively). The highest amounts were found in the lower 10-cm section of ice cores. The microzooplankton community within sea ice comprised mainly aloricate ciliates, foraminifers and micrometazoans. In winter, microzooplankton represent an important fraction of the sympagic community in the Antarctic sea ice, providing a food supply for the upper levels of the trophic web. They can potentially also control microalgal production, and can contribute to particulate organic carbon concentrations when released into the water column due to ice melting in spring. Continued reduction of the sea ice might undermine these roles of microzooplankton, leading to reduction or completely loss in diversity, abundance and biomass of these sympagic protists

    Pluridecadal Temporal Patterns of Tintinnids (Ciliophora, Spirotrichea) in Terra Nova Bay (Ross Sea, Antarctica)

    No full text
    During the next century, the Ross Sea is expected to reduce summer sea ice concentrations and consolidate the presence of shallower mixed layers. Those changes may have a potentially catastrophic effect on the zooplankton community. To investigate if Ross Sea’s past physical and biological condition changes have affected the tintinnids population, and to understand future tintinnids’ role in the plankton community, seawater samples collected in the Terra Nova Bay polynya area during eleven summer expeditions from 1988 to 2017 were analyzed. During this time period, tintinnids’ abundance ranged from 0 to a maximum of 4980 indL−1. The most representative species were Cymatocylis drygalskii, Codonellopsis gaussi and Laackmanniella naviculifaera. These species can be considered keystone species and they can be used to monitor the long-term evolution of the whole microzooplankton community in Terra Nova Bay polynya. The tintinnids’ abundance presented minimum values in 2001 after which there has been a significant increase in the most recent years. The increase in tintinnids’ abundance showed a positive correlation with the temperature, while salinity did not indicate any relationship. In particular, the majority of genera detected showed a significant temperature correlation, with the only exception of Amphorides genus, recorded for the first time in the study area. Our results provide new insights into the spatial distribution and structure of the Antarctic tintinnids community

    Pluridecadal Temporal Patterns of Tintinnids (Ciliophora, Spirotrichea) in Terra Nova Bay (Ross Sea, Antarctica)

    No full text
    During the next century, the Ross Sea is expected to reduce summer sea ice concentrations and consolidate the presence of shallower mixed layers. Those changes may have a potentially catastrophic effect on the zooplankton community. To investigate if Ross Sea’s past physical and biological condition changes have affected the tintinnids population, and to understand future tintinnids’ role in the plankton community, seawater samples collected in the Terra Nova Bay polynya area during eleven summer expeditions from 1988 to 2017 were analyzed. During this time period, tintinnids’ abundance ranged from 0 to a maximum of 4980 indL−1. The most representative species were Cymatocylis drygalskii, Codonellopsis gaussi and Laackmanniella naviculifaera. These species can be considered keystone species and they can be used to monitor the long-term evolution of the whole microzooplankton community in Terra Nova Bay polynya. The tintinnids’ abundance presented minimum values in 2001 after which there has been a significant increase in the most recent years. The increase in tintinnids’ abundance showed a positive correlation with the temperature, while salinity did not indicate any relationship. In particular, the majority of genera detected showed a significant temperature correlation, with the only exception of Amphorides genus, recorded for the first time in the study area. Our results provide new insights into the spatial distribution and structure of the Antarctic tintinnids community

    Spatial distribution of microzooplankton in different areas of the northern Antarctic Peninsula region, with an emphasis on tintinnids

    Get PDF
    The Western Antarctic Peninsula (WAP) is experiencing rapid climate warming, resulting in affecting the marine food web. To investigate the microzooplankton spatial distribution and to assess how climate change could affect the tintinnids community, sea water samples were collected during late summer 2018 at 19 stations in three different areas: Deception Island, Elephant Island and Antarctic Sound. The microzooplankton community comprised mainly tintinnids, aloricate ciliates, heterotrophic dinoflagellates and micrometazoans. Microzooplankton abundance varied between 3 and 109 ind. L−1 and biomass ranged from 0.009 to 2.55 μg C L−1. Significant differences in terms of abundance and taxonomic composition of microzooplankton were found among the three sampling areas. Deception Island area showed 44% of tintinnids and the rest were heterotrophic dinoflagellate, aloricate ciliates and micrometazoans. In Elephant Island and Antarctic Sound areas, tintinnids reached, respectively, 73% and 83% of the microzooplankton composition, with all the other groups varying between 20 and 30%. Tintinnids were the most representative group in the area, with the species Codonellopsis balechi, Codonellopsis glacialis, Cymatocylis convallaria and Cymatocylis drygalskii. The highest amounts of tintinnids were found at the surface and 100 m depth. The above mentioned species may be considered key species for the WAP and therefore they can be used to track environmental and hydrographical changes in the area. In late summer, microzooplankton presented low abundances and biomass, nevertheless they represented an important fraction of the planktonic community in the area

    Microzooplankton composition in the winter sea ice of the Weddell Sea

    No full text
    Sympagic microzooplankton were studied during late winter in the northern Weddell Sea for diversity, abundance and carbon biomass. Ice cores were collected on an ice floe along three dive transects and seawater was taken from under the ice through the central dive hole from which all transects were connected. The areal and vertical microzooplankton distributions in the ice and water were compared. Abundance (max. 1300 ind. l-1) and biomass (max. 28.2 μg C l-1) were high in the ice cores and low in the water below the sea ice (max. 19 ind. l-1, 0.15 μg C l-1, respectively). The highest abundances were observed in the bottom 10 cm of the ice cores. The microzooplankton community within the sea ice comprised mainly aloricate ciliates, foraminifers and micrometazoans. In winter, microzooplankton represent an important fraction of the sympagic community in the Antarctic sea ice. They can potentially control microalgal production and contribute to particulate organic carbon concentrations when released into the water column during the ice melt in spring. Continued reduction of the sea ice may undermine the roles of microzooplankton, leading to a reduction or complete loss of diversity, abundance and biomass of these sympagic protists
    corecore