52 research outputs found

    Needed Research on the Englishes of Appalachia

    Get PDF
    Information about the 79th annual meeting of the Southeastern Conference on Linguistics (SECOL) organized by Jennifer Cramer at the University of Kentucky on April 2012 in Lexington, Kentucky. Topics discussed at the meeting includes current state of research studies on linguistic processes in Appalachia, traditional dialectological and ethnographic. The meeting also featured panel experts including Bridget L. Anderson, Michael Montgomery and Walt Wolfram

    Prospectus, September 20, 1978

    Get PDF
    NEW STU-GO OFFICERS; letters to the editor: Were Stu-go elections \u2778 really fair?, Parkland to get soccer?, PC student feels voting procedure is unfair, Student thinks Moeller is definitely a coach; College Cuisine; Advertising Policy; Mini-workshop to be Sept. 21; Tranquilizing discussion; Dental care presentation; Veterans dropping; Donna Drysdale helps students to success; Brotherson is new State Sec.; LRC offers a lot; WPCD presents special daily feature programs; Festival Gallert displays Vera Klement\u27s art work; PC Stu-go elections 1978: Student government officers\u27 responsibilities, Reactions vary among winning candidates, Election results; Woolly bears indicate winter; $1,000 contest; WPCD\u27s Top 15 For The Week Of September 18; Men\u27s fall fashions -- \u2778; Classifieds; Homer rushes toward title; LaBadie thinking big for track; Parkland\u27s first meet Saturday; Fast Freddy contestants accurate; Golf team \u2778 improved; P.C. women\u27s volleyball team for \u2778 chosen; Fast Freddy Contest; Parkland Women\u27s Volleyball Roster for 1978; Women\u27s Volleyball Schedulehttps://spark.parkland.edu/prospectus_1978/1011/thumbnail.jp

    Predictive coupled-cluster isomer orderings for some Sin{}_nCm{}_m (m,n12m, n\le 12) clusters; A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    Full text link
    The accurate determination of the preferred Si12C12{\rm Si}_{12}{\rm C}_{12} isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3_3 to Si12C12{\rm Si}_{12}{\rm C}_{12}. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and CCSD extrapolation with triple-ζ\zeta (T) correlation, the {\it closo} Si12C12{\rm Si}_{12}{\rm C}_{12} isomer is identified to be the preferred isomer in support of previous calculations [J. Chem. Phys. 2015, 142, 034303]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post MBPT(2) correlation energy is found to be an excellent balance between efficiency and accuracy

    Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver☆

    Get PDF
    Genomic hypomethylation is a consistent finding in both human and animal tumors and mounting experimental evidence suggests a key role for epigenetic events in tumorigenesis. Furthermore, it has been suggested that early changes in DNA methylation and histone modifications may serve as sensitive predictive markers in animal testing for carcinogenic potency of environmental agents. Alterations in metabolism of methyl donors, disturbances in activity and/or expression of DNA methyltransferases, and presence of DNA single-strand breaks could contribute to the loss of cytosine methylation during carcinogenesis; however, the precise mechanisms of genomic hypomethylation induced by chemical carcinogens remain largely unknown. This study examined the mechanism of DNA hypomethylation during hepatocarcinogenesis induced by peroxisome proliferators WY-14,643 (4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid) and DEHP (di-(2-ethylhexyl)phthalate), agents acting through non-genotoxic mode of action. In the liver of male Fisher 344 rats exposed to WY-14,643 (0.1% (w/w), 5 months), the level of genomic hypomethylation increased by ~2-fold, as compared to age-matched controls, while in the DEHP group (1.2% (w/w), 5 months) DNA methylation did not change. Global DNA hypomethylation in livers from WY-14,643 group was accompanied by the accumulation of DNA single-strand breaks, increased cell proliferation, and diminished expression of DNA methyltransferase 1, while the metabolism of methyl donors was not affected. In contrast, none of these parameters changed significantly in rats fed DEHP. Since WY-14,643 is much more potent carcinogen than DEHP, we conclude that the extent of loss of DNA methylation may be related to the carcinogenic potential of the chemical agent, and that accumulation of DNA single-strand breaks coupled to the increase in cell proliferation and altered DNA methyltransferase expression may explain genomic hypomethylation during peroxisome proliferator-induced carcinogenesis

    Characterization of Zebrafish von Willebrand Factor Reveals Conservation of Domain Structure, Multimerization, and Intracellular Storage

    Get PDF
    von Willebrand disease (VWD) is the most common inherited human bleeding disorder and is caused by quantitative or qualitative defects in von Willebrand factor (VWF). VWF is a secreted glycoprotein that circulates as large multimers. While reduced VWF is associated with bleeding, elevations in overall level or multimer size are implicated in thrombosis. The zebrafish is a powerful genetic model in which the hemostatic system is well conserved with mammals. The ability of this organism to generate thousands of offspring and its optical transparency make it unique and complementary to mammalian models of hemostasis. Previously, partial clones of zebrafish vwf have been identified, and some functional conservation has been demonstrated. In this paper we clone the complete zebrafish vwf cDNA and show that there is conservation of domain structure. Recombinant zebrafish Vwf forms large multimers and pseudo-Weibel-Palade bodies (WPBs) in cell culture. Larval expression is in the pharyngeal arches, yolk sac, and intestinal epithelium. These results provide a foundation for continued study of zebrafish Vwf that may further our understanding of the mechanisms of VWD

    Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet

    Get PDF
    MicroRNAs (miRNAs) are a class of small, conserved, tissue-specific regulatory non-coding RNAs that modulate a variety of biological processes and play a fundamental role in pathogenesis of major human diseases, including nonalcoholic fatty liver disease (NAFLD). However, the association between inter-individual differences in susceptibility to NAFLD and altered miRNA expression is largely unknown. In view of this, the goals of the present study were (i) to determine whether or not individual differences in the extent of NAFLD-induced liver injury are associated with altered miRNA expression, and (ii) assess if circulating blood miRNAs may be used as potential biomarkers for the noninvasive evaluation of the severity of NAFLD. A panel of seven genetically diverse strains of inbred male mice (A/J, C57BL/6J, C3H/HeJ, 129S/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were fed a choline- and folate-deficient (CFD) diet for 12 weeks. This diet induced liver injury in all mouse strains; however, the extent of NAFLD-associated pathomorphological changes in the livers was strain-specific, with A/J, C57BL/6J, and C3H/HeJ mice being the least sensitive and WSB/EiJ mice being the most sensitive. The morphological changes in the livers were accompanied by differences in the levels of hepatic and plasma miRNAs. The levels of circulating miR-34a, miR-122, miR-181a, miR-192, and miR-200b miRNAs were significantly correlated with a severity of NAFLD-specific liver pathomorphological features, with the strongest correlation occurring with miR-34a. These observations suggest that the plasma levels of miRNAs may be used as biomarkers for noninvasive monitoring the extent of NAFLD-associated liver injury and susceptibility to NAFLD

    A Comparison of Cyclic Variations in Anterior Knee Laxity, Genu Recurvatum, and General Joint Laxity across the Menstrual Cycle

    Get PDF
    . A comparison of cyclic variations in anterior knee laxity, genu recurvatum and general joint laxity across the menstrual cycle. Journal of Orthopaedic Research, 28, 1411Research, 28, -1417 Abstract: Changes in anterior knee laxity (AKL), genu recurvatum (GR) and general joint laxity (GJL) were quantified across days of the early follicular and early luteal phases of the menstrual cycle in 66 females, and the similarity in their pattern of cyclic variations examined. Laxity was measured on each of the first 6 days of menses (M1-M6) and the first 8 days following ovulation (L1-L8) over two cycles. The largest mean differences were observed between L5 and L8 for AKL (0.32 mm), and between L5 and M1 for GR (0.56°) and GJL (0.26) (p < 0.013). At the individual level, mean absolute cyclic changes in AKL (1.8 ± 0.7 mm, 1.6 ± 0.7 mm), GR (2.8 ± 1.0°, 2.4 ± 1.0°), and GJL (1.1 ± 1.1, 0.7 ± 1.0) were more apparent, with minimum, maximum and delta values being quite consistent from month to month (ICC 2,3 = 0.51-0.98). Although the average daily pattern of change in laxity was quite similar between variables (Spearman correlation range 0.61 and 0.90), correlations between laxity measures at the individual level were much lower (range −0.07 to 0.43). Substantial, similar, and reproducible cyclic changes in AKL, GR, and GJL were observed across the menstrual cycle, with the magnitude and pattern of cyclic changes varying considerably among females. Article: Joint laxity continues to be a variable of interest as we seek to uncover the underlying risk factors for ACL injury in females

    Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet

    Get PDF
    The importance of epigenetic changes in etiology and pathogenesis of disease has been increasingly recognized. However, the role of epigenetic alterations in the genesis of hepatic steatosis and cause of individual susceptibilities to this pathological state are largely unknown

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore