2 research outputs found

    Towards Deterministic Communications in 6G Networks: State of the Art, Open Challenges and the Way Forward

    Full text link
    Over the last decade, society and industries are undergoing rapid digitization that is expected to lead to the evolution of the cyber-physical continuum. End-to-end deterministic communications infrastructure is the essential glue that will bridge the digital and physical worlds of the continuum. We describe the state of the art and open challenges with respect to contemporary deterministic communications and compute technologies: 3GPP 5G, IEEE Time-Sensitive Networking, IETF DetNet, OPC UA as well as edge computing. While these technologies represent significant technological advancements towards networking Cyber-Physical Systems (CPS), we argue in this paper that they rather represent a first generation of systems which are still limited in different dimensions. In contrast, realizing future deterministic communication systems requires, firstly, seamless convergence between these technologies and, secondly, scalability to support heterogeneous (time-varying requirements) arising from diverse CPS applications. In addition, future deterministic communication networks will have to provide such characteristics end-to-end, which for CPS refers to the entire communication and computation loop, from sensors to actuators. In this paper, we discuss the state of the art regarding the main challenges towards these goals: predictability, end-to-end technology integration, end-to-end security, and scalable vertical application interfacing. We then present our vision regarding viable approaches and technological enablers to overcome these four central challenges. Key approaches to leverage in that regard are 6G system evolutions, wireless friendly integration of 6G into TSN and DetNet, novel end-to-end security approaches, efficient edge-cloud integrations, data-driven approaches for stochastic characterization and prediction, as well as leveraging digital twins towards system awareness.Comment: 22 pages, 8 figure

    The owner, the provider and the subcontractors : how to handle accountability and liability management for 5G end to end service

    Get PDF
    The adoption of 5G services depends on the capacity to provide high-value services. In addition to enhanced performance, the capacity to deliver Security Service Level Agreements (SSLAs) and demonstrate their fulfillment would be a great incentive for the adoption of 5G services for critical 5G Verticals (e.g., service suppliers like Energy or Intelligent Transportation Systems) subject to specific industrial safety, security or service level rules and regulations (e.g., NIS or SEVESO Directives). Yet, responsibilities may be difficult to track and demonstrate because 5G infrastructures are interconnected and complex, which is a challenge anticipated to be exacerbated in future 6G networks. This paper describes a demonstrator and a use case that shows how 5G Service Providers can deliver SSLAs to their customers (Service Owners) by leveraging a set of network enablers developed in the INSPIRE-5Gplus project to manage their accountability, liability and trust placed in subcomponents of a service (subcontractors). The elaborated enablers are in particular a novel sTakeholder Responsibility, AccountabIity and Liability deScriptor (TRAILS), a Liability-Aware Service Management Referencing Service (LASM-RS), an anomaly detection tool (IoT-MMT), a Root Cause Analysis tool (IoT-RCA), two Remote Attestation mechanisms (Systemic and Deep Attestation), and two Security-by-Orchestration enablers (one for the 5G Core and one for the MEC)
    corecore