278 research outputs found

    Disentangling the Structure-Activity Relationships of Naphthalene Diimides as Anticancer G-Quadruplex-Targeting Drugs

    Get PDF
    In the context of developing efficient anticancer therapies aimed at eradicating any sort of tumors, G-quadruplexes represent excellent targets. Small molecules able to interact with G-quadruplexes can interfere with cell pathways specific of tumors and common to all cancers. Naphthalene diimides (NDIs) are among the most promising, putative anticancer G-quadruplextargeting drugs, due to their ability to simultaneously target multiple G-quadruplexes and their strong, selective in vitro and in vivo anticancer activity. Here, all the available biophysical, biological, and structural data concerning NDIs targeting Gquadruplexes were systematically analyzed. Structure−activity correlations were obtained by analyzing biophysical data of their interactions with G-quadruplex targets and control duplex structures, in parallel to biological data concerning the antiproliferative activity of NDIs on cancer and normal cells. In addition, NDI binding modes to G-quadruplexes were discussed in consideration of the structures and properties of NDIs by in-depth analysis of the available structural models of G-quadruplex/NDI complexes

    Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics

    Get PDF
    The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed

    Tuning the polymorphism of the anti-VEGF G-rich V7t1 aptamer by covalent dimeric constructs

    Get PDF
    In the optimization process of nucleic acid aptamers, increased affinity and/or activity are generally searched by exploring structural analogues of the lead compound. In many cases, promising results have been obtained by dimerization of the starting aptamer. Here we studied a focused set of covalent dimers of the G-quadruplex (G4) forming anti-Vascular Endothelial Growth Factor (VEGF) V7t1 aptamer with the aim of identifying derivatives with improved properties. In the design of these covalent dimers, connecting linkers of different chemical nature, maintaining the same polarity along the strand or inverting it, have been introduced. These dimeric aptamers have been investigated using several biophysical techniques to disclose the conformational behavior, molecularity and thermal stability of the structures formed in different buffers. This in-depth biophysical characterization revealed the formation of stable G4 structures, however in some cases accompanied by alternative tridimensional arrangements. When tested for their VEGF165 binding and antiproliferative activity in comparison with V7t1, these covalent dimers showed slightly lower binding ability to the target protein but similar if not slightly higher antiproliferative activity on human breast adenocarcinoma MCF-7 cells. These results provide useful information for the design of improved dimeric aptamers based on further optimization of the linker joining the two consecutive V7t1 sequences

    Soil Conservation Service curve number: how to take into account spatial and temporal variability

    Get PDF
    The most commonly used method to evaluate rainfall excess, is the Soil Conservation Service (SCS) runoff curve number model. This method is based on the determination of the CN valuethat is linked with a hydrological soil group, cover type, treatment, hydrologic condition and antecedent runoff condition. To calculate the antecedent runoff condition the standard procedure needs to calculate the rainfall over the entire basin during the five days previous to the beginning of the event in order to simulate and then to use that volume of rainfall to calculate the antecedent moisture condition (AMC). This is necessary in order to obtain the correct curve number value. The value of the modified parameter is then kept constant throughout the whole event. The aim of this work is to evaluate the possibility of improving the curve number method. The various assumptions are focused on modifying those related to rainfall and the determination of an AMC condition and their role in the determination of the value of the curve number parameter. In order to consider the spatial variability we assumed that the rainfall which influences the AMC and the CN value does not account for the rainfall over the entire basin, but for the rainfall within a single cell where the basin domain is discretized. Furthermore, in order to consider the temporal variability of rainfall we assumed that the value of the CN of the single cell is not maintained constant during the whole event, but instead varies throughout it according to the time interval used to define the AMC conditions

    Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one!

    Get PDF
    The G-quadruplex-forming VEGF-binding aptamer V7t1 was previously found to be highly polymorphic in a K+-containing solution and, to restrict its conformational preferences to a unique, well-defined form, modified nucleotides (LNA and/or UNA) were inserted in its sequence. We here report an in-depth biophysical characterization of V7t1 in a Na+-rich medium, mimicking the extracellular environment in which VEGF targeting should occur, carried out combining several techniques to analyse the conformational behaviour of the aptamer and its binding to the protein. Our results demonstrate that, in the presence of high Na+ concentrations, V7t1 behaves in a very different way if subjected or not to annealing procedures, as evidenced by native gel electrophoresis, size exclusion chromatography and dynamic light scattering analysis. Indeed, not-annealed V7t1 forms both monomeric and dimeric G-quadruplexes, while the annealed oligonucleotide is a monomeric species. Remarkably, only the dimeric aptamer efficiently binds VEGF, showing higher affinity for the protein compared to the monomeric species. These findings provide new precious information for the development of improved V7t1 analogues, allowing more efficient binding to the cancer-related protein and the design of effective biosensors or theranostic devices based on VEGF targeting

    Synthesis and characterization of multifunctional nanovesicles composed of POPC lipid molecules for nuclear imaging

    Get PDF
    The integration of nuclear imaging analysis with nanomedicine has tremendously grown and represents a valid and powerful tool for the development and clinical translation of drug delivery systems. Among the various types of nanostructures used as drug carriers, nanovesicles represent intriguing platforms due to their capability to entrap both lipophilic and hydrophilic agents, and their well-known biocompatibility and biodegradability. In this respect, here we present the development of a labelling procedure of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine)-based liposomes incorporating an ad hoc designed lipophilic NOTA (1, 4, 7- triazacyclononane-1, 4, 7-triacetic acid) analogue, derivatized with an oleic acid residue, able to bind the positron emitter gallium-68(III). Based on POPC features, the optimal conditions for liposome labelling were studied with the aim of optimizing the Ga(III) incorporation and obtaining a significant radiochemical yield. The data presented in this work demonstrate the feasibility of the labelling procedure on POPC liposomes co-formulated with the ad hoc designed NOTA analogue. We thus provided a critical insight into the practical aspects of the development of vesicles for theranostic approaches, which in principle can be extended to other nanosystems exploiting a variety of bioconjugation protocols

    Long term discharge simulation through a geomorphological model

    Get PDF
    Flow duration curve estimation must be performed on the basis of continuous rainfall-runoff simulations. In ungauged basins, a under-parameterised model is needed to reduce the uncertainty of the results. In this paper a geomorphological model based on a width function (WFIUH) was used to simulate low flows in a mean-sized basin in Central Italy. The WFIUH model [9]introduces a new approachto the curvenumber method and was used to evaluate the stream-flow for hourly event representation. The aim of this work is to evaluate the behaviour of the WFIUH model for long term simulation and then to compare the standard curve number approach to the curve number method implemented in the WFIUH model. To predict the behaviour of catchments for a long term, to know the response of catchments in different seasons or in different years, it is necessary to improve the model and to identify a new method for calculating base-flow. To obtain these results, it is necessary to separate base-flow and stream-flow, simulate the two contributions and build a unique series of values that reproduces the answer of the basin to different rainfalls during the year to estimate the low flow during a dry period. The model can also be used in ungauged basins because a unique parameter is used. © 2013 AIP Publishing LLC

    Charge-transfer interactions stabilize g-quadruplex-forming thrombin binding aptamers and can improve their anticoagulant activity

    Get PDF
    In the search for optimized thrombin binding aptamers (TBAs), we herein describe the synthesis of a library of TBA analogues obtained by end-functionalization with the electron-rich 1,5-dialkoxy naphthalene (DAN) and the electron-deficient 1,8,4,5-naphthalenetetra-carboxylic diimide (NDI) moieties. Indeed, when these G-rich oligonucleotides were folded into the peculiar TBA G-quadruplex (G4) structure, effective donor–acceptor charge transfer interactions between the DAN and NDI residues attached to the extremities of the sequence were induced, providing pseudo-cyclic structures. Alternatively, insertion of NDI groups at both extremities produced TBA analogues stabilized by π–π stacking interactions. All the doubly-modified TBAs were characterized by different biophysical techniques and compared with the analogues carrying only the DAN or NDI residue and unmodified TBA. These modified TBAs exhibited higher nuclease resistance, and their G4 structures were markedly stabilized, as evidenced by increased Tm values compared to TBA. These favorable properties were also associated with improved anticoagulant activity for one DAN/NDI-modified TBA, and for one NDI/NDI-modified TBA. Our results indicated that TBA pseudo-cyclic structuring by ad hoc designed end-functionalization represents an efficient approach to improve the aptamer features, while pre-organizing and stabilizing the G4 structure but allowing sufficient flexibility to the aptamer folding, which is necessary for optimal thrombin recognition

    Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems

    Get PDF
    In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner

    Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices

    Get PDF
    In several biomedical applications, the detection of biomarkers demands high sensitivity, selectivity and easy-to-use devices. Organic electrochemical transistors (OECTs) represent a promising class of devices combining a minimal invasiveness and good signal transduction. However, OECTs lack of intrinsic selectivity that should be implemented by specific approaches to make them well suitable for biomedical applications. Here, we report on a biosensor in which selectivity and a high sensitivity are achieved by interfacing, in an OECT architecture, a novel gate electrode based on aptamers, Au nanoparticles and graphene hierarchically organized to optimize the final response. The fabricated biosensor performs state of the art limit of detection monitoring biomolecules, such as thrombin-with a limit of detection in the picomolar range (≤ 5 pM) and a very good selectivity even in presence of supraphysiological concentrations of Bovine Serum Albumin (BSA-1mM). These accomplishments are the final result of the gate hierarchic structure that reduces sterich indrance that could contrast the recognition events and minimizes false positive, because of the low affinity of graphene towards the physiological environment. Since our approach can be easily applied to a large variety of different biomarkers, we envisage a relevant potential for a large series of different biomedical applications
    • …
    corecore