26 research outputs found

    Thermal profiles within the channel of planar gunn diodes using micro-particle sensors

    Get PDF
    The paper describes the use of a novel microparticle sensor (~3 μm diameter) and infra-red (IR) microscopy to measure the temperature profile within the active channel (typically 3 μm length and 120 μm width) of planar Gunn diodes. The method has enabled detailed temperature measurements showing an asymmetrical temperature profile along the active width of these devices. The asymmetrical temperature profile suggests a similar behaviour in the channel current density, which may contribute to the lower than expected RF output power

    Planar gunn diode characterisation and resonators elements to realise oscillator circuits

    Get PDF
    The paper describes the planar Gunn diode, which is well suited to providing milli-metric and tera hertz sources using microwave monolithic integrated circuit (MMIC) technologies. Different planar Gunn electrode geometries are described along with DC, RF and thermal characterisation. To realize the planar high frequency sources there is requirement for high frequency planar resonators, the paper will describe both the radial and new diamond shaped geometries

    Near infrared high efficiency InAs/GaAsSb QDLEDs: band alignment and carrier recombination mechanisms

    Get PDF
    The development of high efficiency laser diodes (LD) and light emitting diodes (LED) covering the 1.0 to 1.55 μm region of the spectra using GaAs heteroepitaxy has been long pursued. Due to the lack of materials that can be grown lattice-macthed to GaAs with bandgaps in the 1.0 to 1.55 μm region, quantum wells (QW) or quantum dots (QD) need be used. The most successful approach with QWs has been to use InGaAs, but one needs to add another element, such as N, to be able to reach 1.3/1.5μm. Even though LDs have been successfully demonstrated with the QW approach, using N leads to problems with compositional homogeneity across the wafer, and limited efficiency due to strong non-radiative recombination. The alternative approach of using InAs QDs is an attractive option, but once again, to reach the longest wavelengths one needs very large QDs and control over the size distribution and band alignment. In this work we demonstrate InAs/GaAsSb QDLEDs with high efficiencies, emitting from 1.1 to 1.52 μm, and we analyze the band alignment and carrier loss mechanisms that result from the presence of Sb in the capping layer

    Terahertz oscillations in an In<sub>0.53</sub>Ga<sub>0.47</sub>As submicron planar gunn diode

    Get PDF
    The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode – the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5μm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5μm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600nm and 700nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In&lt;sub&gt;0.53&lt;/sub&gt;Ga&lt;sub&gt;0.47&lt;/sub&gt;A on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 µW was obtained from a 600 nm long ×120 µm wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible – the Monte Carlo model used predicts power output at frequencies over 300 GHz

    Intersubband plasmons induced negative refraction at mid-IR frequency in heterostructured semiconductor metamaterials

    Get PDF
    We theoretically and experimentally demonstrate negative refraction in a semiconductor system operating at mid-infrared wavelengths. Such effect is generic and realized by electrons quantum confinement in quantum wells, acting as an adjustable resonance
    corecore