4 research outputs found
A review on statistical and machine learning competing risks methods
When modelling competing risks survival data, several techniques have been proposed in both the statisticaland machine learning literature. State-of-the-art methods have extended classical approaches with moreflexible assumptions that can improve predictive performance, allow high dimensional data and missingvalues, among others. Despite this, modern approaches have not been widely employed in applied settings.This article aims to aid the uptake of such methods by providing a condensed compendium of competingrisks survival methods with a unified notation and interpretation across approaches. We highlight availablesoftware and, when possible, demonstrate their usage via reproducible R vignettes. Moreover, we discusstwo major concerns that can affect benchmark studies in this context: the choice of performance metricsand reproducibility
Improving Risk Stratification for Patients with Type 2 Myocardial Infarction
BACKGROUND: Despite poor cardiovascular outcomes, there are no dedicated, validated risk stratification tools to guide investigation or treatment in type 2 myocardial infarction. OBJECTIVES: The goal of this study was to derive and validate a risk stratification tool for the prediction of death or future myocardial infarction in patients with type 2 myocardial infarction. METHODS: The T2-risk score was developed in a prospective multicenter cohort of consecutive patients with type 2 myocardial infarction. Cox proportional hazards models were constructed for the primary outcome of myocardial infarction or death at 1 year using variables selected a priori based on clinical importance. Discrimination was assessed by area under the receiving-operating characteristic curve (AUC). Calibration was investigated graphically. The tool was validated in a single-center cohort of consecutive patients and in a multicenter cohort study from sites across Europe. RESULTS: There were 1,121, 250, and 253 patients in the derivation, single-center, and multicenter validation cohorts, with the primary outcome occurring in 27% (297 of 1,121), 26% (66 of 250), and 14% (35 of 253) of patients, respectively. The T2-risk score incorporating age, ischemic heart disease, heart failure, diabetes mellitus, myocardial ischemia on electrocardiogram, heart rate, anemia, estimated glomerular filtration rate, and maximal cardiac troponin concentration had good discrimination (AUC: 0.76; 95% CI: 0.73-0.79) for the primary outcome and was well calibrated. Discrimination was similar in the consecutive patient (AUC: 0.83; 95% CI: 0.77-0.88) and multicenter (AUC: 0.74; 95% CI: 0.64-0.83) cohorts. T2-risk provided improved discrimination over the Global Registry of Acute Coronary Events 2.0 risk score in all cohorts. CONCLUSIONS: The T2-risk score performed well in different health care settings and could help clinicians to prognosticate, as well as target investigation and preventative therapies more effectively. (High-Sensitivity Troponin in the Evaluation of Patients With Suspected Acute Coronary Syndrome [High-STEACS]; NCT01852123
Development and validation of DNA Methylation scores in two European cohorts augment 10-year risk prediction of type 2 diabetes
This is the author accepted manuscriptAvailability of Data and Material: According to the terms of consent for Generation Scotland participants, access to data must be reviewed by the Generation Scotland Access Committee. Applications should be made to [email protected]. All code is available with open access at the following Gitlab repository: https://github.com/marioni-group MethylPipeR (version 1.0.0) is available at: https://github.com/marioni-group/MethylPipeR MethylPipeR-UI is available at: https://github.com/marioni-group/MethylPipeR-UI. The informed consents given by KORA study participants do not cover data posting in public databases. However, data are available upon request from KORA Project Application Self Service Tool (https://epi.helmholtz-muenchen.de/). Data requests can be submitted online and are subject to approval by the KORA Board.Type 2 diabetes mellitus (T2D) presents a major health and economic burden that could be alleviated with improved early prediction and intervention. While standard risk factors have shown good predictive performance, we show that the use of blood-based DNA methylation information leads to a significant improvement in the prediction of 10-year T2D incidence risk. Previous studies have been largely constrained by linear assumptions, the use of CpGs one-at43 a-time, and binary outcomes. We present a flexible approach (via an R package, MethylPipeR) based on a range of linear and tree-ensemble models that incorporate time-to-event data for prediction. Using the Generation Scotland cohort (training set ncases=374, ncontrols=9,461; test set ncases=252, ncontrols=4,526) our best-performing model (Area Under the Curve (AUC)=0.872, Precision Recall AUC (PRAUC)=0.302) showed notable improvement in 10-year onset prediction beyond standard risk factors (AUC=0.839, PRAUC=0.227). Replication was
observed in the German-based KORA study (n=1,451, ncases = 142, p=1.6x10-5 49 ).Wellcome TrustChief Scientist Office of the Scottish Government Health DirectoratesScottish Funding Counci
NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data