116 research outputs found

    Ageing effects on the wettability behavior of laser textured silicon

    Get PDF
    In the present work we investigate the ageing of acid cleaned femtosecond laser textured silicon surfaces. Changes in the surface structure and chemistry were analysed by Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), in order to explain the variation with time of the water contact angles of the laser textured surfaces. It is shown that highly hydrophobic silicon surfaces are obtained immediately after laser texturing and cleaning with acid solutions (water contact angle >120 degrees). However these surfaces are not stable and ageing leads to a decrease of the water contact angle which reaches a value of 80 degrees. XPS analysis of the surfaces shows that the growth of the native oxide layer is most probably responsible for this behavior. (C) 2010 Elsevier B.V. All rights reserved

    The early corrosion behaviour of hot dip galvanised steel pre-treated with bis-1,2-(triethoxysilyl)ethane

    Get PDF
    Abstract The present work aims at correlating the evolution of the analytical composition of bis-1,2-(triethoxysilyl)ethane films formed on hot dip galvanised steel substrate during immersion in NaCl solution with the corrosion performance of the pre-treated substrates. The electrochemical tests were carried out by electrochemical impedance spectroscopy and the analytical characterisation was performed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and infrared spectroscopy (FT-IR). The electrochemical results show that the functional silane provides temporary corrosion protection for hot dip galvanised steel during immersion in NaCl-containing solutions. The analytical results show that the chemical composition of the silane film changes during immersion in the aggressive solution. During the first days of immersion these changes improve the corrosion resistance of the pre-treated substrate

    Electrochemical and analytical investigation of passive films formed on stainless steels in alkaline media

    Get PDF
    Passive films were grown in potentiodynamic mode, by cyclic voltammetry on AISI 316 and AISI 304 stainless steels. The composition of these films was investigated by X-ray photoelectron spectroscopy (XPS). The electrochemical behaviour and the chemical composition of the passive films formed by cyclic voltammetry were compared to those of films grown under natural conditions (by immersion at open circuit potential, OCP) in alkaline solutions simulating concrete. The study included the effect of pH of the electrolyte and the effect of the presence of chloride ions. The XPS results revealed important changes in the passive film composition, which becomes enriched in chromium and depleted in magnetite as the pH decreases. On the other hand, the presence of chlorides promotes a more oxidised passive layer. The XPS results also showed relevant differences on the composition of the oxide layers for the films formed under cyclic voltammetry and/or under OCP

    Effectiveness of epoxy coating modified with yttrium oxide loaded with imidazole on the corrosion protection of steel

    Get PDF
    The search for highly effective corrosion protection solutions to avoid degradation of the metallic parts is enabling the development of polymeric organic coatings. Of particular relevance, polymeric nanocomposite coatings, modified with corrosion inhibitors, have been developed to provide enhanced surface protection. In this work, yttrium oxide nanoparticles loaded with corrosion inhibitor (Imidazole), used as additives in the formulation of epoxy for coated on the steel substrate. The loading of Y2O3 with imidazole was confirmed by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller analysis. UV-Vis analysis demonstrated the pH-sensitive behavior of the imidazole that helps in self-release when necessary. Electrochemical impedance spectroscopy (EIS) of the coated samples revealed that the coating modified with Y2O3/IMD provides better corrosion protection compared to coatings containing only Y2O3 . XPS analysis validated the presence of an imidazole protective film on the steel substrate that enhanced the corrosion resistance of the coated samples.The research funding was provided by the Qatar National Research Fund (a member of the Qatar Foundation, Grant Number NPRP11S-1226-170132. The additional funding for the project was also provided under the project UIDB/00100/2020 and UIDP/00100/2020.Scopu

    Fabrication of Three-Dimensional Dendritic Ni-Co Films By Electrodeposition on Stainless Steel Substrates

    Get PDF
    Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity

    Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatings

    Get PDF
    In the present study, the effect of concentration of titanium carbide (TiC) particles on the structural, mechanical, and electrochemical properties of Ni–P composite coatings was investigated. Various amounts of TiC particles (0, 0.5, 1.0, 1.5, and 2.0 g L−1) were co-electrodeposited in the Ni–P matrix under optimized conditions and then characterized by employing various techniques. The structural analysis of prepared coatings indicates uniform, compact, and nodular structured coatings without any noticeable defects. Vickers microhardness and nanoindentation results demonstrate the increase in the hardness with an increasing amount of TiC particles attaining its terminal value (593HV100) at the concentration of 1.5 g L−1. Further increase in the concentration of TiC particles results in a decrease in hardness, which can be ascribed to their accumulation in the Ni–P matrix. The electrochemical results indicate the improvement in corrosion protection efficiency of coatings with an increasing amount of TiC particles reaching to ~ 92% at 2.0 g L−1, which can be ascribed to a reduction in the active area of the Ni–P matrix by the presence of inactive ceramic particles. The favorable structural, mechanical, and corrosion protection characteristics of Ni–P–TiC composite coatings suggest their potential applications in many industrial applications

    Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy

    Get PDF
    Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys. The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques
    corecore