8,581 research outputs found

    Split-sideband spectroscopy in slowly modulated optomechanics

    Get PDF
    Optomechanical coupling between the motion of a mechanical oscillator and a cavity represents a new arena for experimental investigation of quantum effects on the mesoscopic and macroscopic scale.The motional sidebands of the output of a cavity offer ultra-sensitive probes of the dynamics. We introduce a scheme whereby these sidebands split asymmetrically and show how they may be used as experimental diagnostics and signatures of quantum noise limited dynamics. We show split-sidebands with controllable asymmetry occur by simultaneously modulating the light-mechanical coupling gg and ωM\omega_M - slowly and out of-phase. Such modulations are generic but already occur in optically trapped set-ups where the equilibrium point of the oscillator is varied cyclically. We analyse recently observed, but overlooked, experimental split-sideband asymmetries; although not yet in the quantum regime, the data suggests that split sideband structures are easily accessible to future experiments

    Cavity cooling a single charged nanoparticle

    Full text link
    The development of laser cooling coupled with the ability to trap atoms and ions in electromagnetic fields, has revolutionised atomic and optical physics, leading to the development of atomic clocks, high-resolution spectroscopy and applications in quantum simulation and processing. However, complex systems, such as large molecules and nanoparticles, lack the simple internal resonances required for laser cooling. Here we report on a hybrid scheme that uses the external resonance of an optical cavity, combined with radio frequency (RF) fields, to trap and cool a single charged nanoparticle. An RF Paul trap allows confinement in vacuum, avoiding instabilities that arise from optical fields alone, and crucially actively participates in the cooling process. This system offers great promise for cooling and trapping a wide range of complex charged particles with applications in precision force sensing, mass spectrometry, exploration of quantum mechanics at large mass scales and the possibility of creating large quantum superpositions.Comment: 8 pages, 5 figures Updated version includes additional references, new title, and supplementary information include

    Fractional \hbar-scaling for quantum kicked rotors without cantori

    Get PDF
    Previous studies of quantum delta-kicked rotors have found momentum probability distributions with a typical width (localization length LL) characterized by fractional \hbar-scaling, ie L2/3L \sim \hbar^{2/3} in regimes and phase-space regions close to `golden-ratio' cantori. In contrast, in typical chaotic regimes, the scaling is integer, L1L \sim \hbar^{-1}. Here we consider a generic variant of the kicked rotor, the random-pair-kicked particle (RP-KP), obtained by randomizing the phases every second kick; it has no KAM mixed phase-space structures, like golden-ratio cantori, at all. Our unexpected finding is that, over comparable phase-space regions, it also has fractional scaling, but L2/3L \sim \hbar^{-2/3}. A semiclassical analysis indicates that the 2/3\hbar^{2/3} scaling here is of quantum origin and is not a signature of classical cantori.Comment: 5 pages, 4 figures, Revtex, typos removed, further analysis added, authors adjuste

    Does solar structure vary with solar magnetic activity?

    Full text link
    We present evidence that solar structure changes with changes in solar activity. We find that the adiabatic index, Gamma_1, changes near the second helium ionization, i.e., at a depth of about 0.98 R_sun. We believe that this change is a result of the change in the effective equation of state caused by magnetic fields. Inversions should be able to detect the changes in Gamma_1 if mode sets with reliable and precise high-degree modes are available.Comment: To appear in ApJ Letter
    corecore