79 research outputs found

    Antigen B from Echinococcus granulosus enters mammalian cells by endocytic pathways

    Get PDF
    Background Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. Methodology/Principal findings In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. Conclusions/Significance The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival

    Urinary peptidomics and bioinformatics for the detection of diabetic kidney disease

    Get PDF
    The aim of this study was to establish a peptidomic profle based on LC-MS/MS and random forest (RF) algorithm to distinguish the urinary peptidomic scenario of type 2 diabetes mellitus (T2DM) patients with diferent stages of diabetic kidney disease (DKD). Urine from 60 T2DM patients was collected: 22 normal (stage A1), 18 moderately increased (stage A2) and 20 severely increased (stage A3) albuminuria. A total of 1080 naturally occurring peptides were detected, which resulted in the identifcation of a total of 100 proteins, irrespective of the patients’ renal status. The classifcation accuracy showed that the most severe DKD (A3) presented a distinct urinary peptidomic pattern. Estimates for peptide importance assessed during RF model training included multiple fragments of collagen and alpha-1 antitrypsin, previously associated to DKD. Proteasix tool predicted 48 proteases potentially involved in the generation of the 60 most important peptides identifed in the urine of DM patients, including metallopeptidases, cathepsins, and calpains. Collectively, our study lightened some biomarkers possibly involved in the pathogenic mechanisms of DKD, suggesting that peptidomics is a valuable tool for identifying the molecular mechanisms underpinning the disease and thus novel therapeutic targets

    Proteomic profling of hydatid fuid from pulmonary cystic echinococcosis

    Get PDF
    Background: Most cystic echinococcosis cases in Southern Brazil are caused by Echinococcus granulosus and Echinococcus ortleppi. Proteomic studies of helminths have increased our knowledge about the molecular survival strategies that are used by parasites. Here, we surveyed the protein content of the hydatid fluid compartment in E. granulosus and E. ortleppi pulmonary bovine cysts to better describe and compare their molecular arsenal at the host-parasite interface. Methods: Hydatid fluid samples from three isolates of each species were analyzed using mass spectrometry-based proteomics (LC-MS/MS). In silico functional analyses of the identified proteins were performed to examine parasite survival strategies. Results: The identified hydatid fluid protein profiles showed a predominance of parasite proteins compared to host proteins that infiltrate the cysts. We identified 280 parasitic proteins from E. granulosus and 251 from E. ortleppi, including 52 parasitic proteins that were common to all hydatid fluid samples. The in silico functional analysis revealed important molecular functions and processes that are active in pulmonary cystic echinococcosis, such as adhesion, extracellular structures organization, development regulation, signaling transduction, and enzyme activity.Conclusions: The protein profiles described here provide evidence of important mechanisms related to basic cellular processes and functions that act at the host-parasite interface in cystic echinococcosis. The molecular tools used by E. granulosus and E. ortleppi for survival within the host are potential targets for new therapeutic approaches to treat cystic echinococcosis and other larval cestodiases

    Urinary endogenous peptides as biomarkers for prostate cancer

    Get PDF
    Prostate cancer (PCa) is one of the most prevalent types of cancer in men worldwide; however, the main diagnostic tests available for PCa have limitations and a biopsy is required for histopathological confirmation of the disease. Prostate specific antigen (PSA) is the main biomarker used for the early detection of PCa, but an elevated serum concentration is not cancer specific. Therefore, there is a need for the discovery of new non invasive biomarkers that can accurately diagnose PCa. The present study used trichloroacetic acid induced protein precipitation and liquid chromatography mass spectrometry to profile endogenous peptides in urine samples from patients with PCa (n=33), benign prostatic hyperplasia (n=25) and healthy individuals (n=28). Receiver operating characteristic curve analysis was performed to evaluate the diagnostic performance of urinary peptides. In addition, Proteasix tool was used for in silico prediction of protease cleavage sites. Five urinary peptides derived from uromodulin were revealed to be significantly altered between the study groups, all of which were less abundant in the PCa group. This peptide panel showed a high potential to discriminate between the study groups, resulting in area under the curve (AUC) values between 0.788 and 0.951. In addition, urinary peptides outperformed PSA in discriminating between malignant and benign prostate conditions (AUC=0.847), showing high sensitivity (81.82%) and specificity (88%). From in silico analyses, the proteases HTRA2, KLK3, KLK4, KLK14 and MMP25 were identified as potentially involved in the degradation of uromodulin peptides in the urine of patients with PCa. In conclusion, the present study allowed the identification of urinary peptides with potential for use as non invasive biomarkers in PCa diagnosis
    • …
    corecore