2 research outputs found

    Primary lung cancer cell culture from transthoracic needle biopsy samples

    Get PDF
    Artículo de investigación1-14Lung cancer is the leading cause of cancer death in the world. The high mortality rate of this pathology is directly related to its late detection, since its symptoms can be masked by other diseases of lower risk. Although in recent years the number of research related to this subject has increased, molecular mechanisms that trigger this disease remains poorly understood. Experimental models are therefore vital for use in research. Immortalized cell lines have inherent limitations. Explanted tumoral cells obtained by transthoracic needle biopsy can be a potential source of primary culture of human lung tumor cells. Tumor specimens from 14 patients suspected of primary or metastatic lung cancer were obtained by CT-guided transthoracic lung biopsy. Solid tumors were mechanically disaggregated under a stereoscope. Cells were cultured in Base C growth media supplemented with 5% fetal bovine serum in 24-well cell culture plates. Primary lung cancer cell culture was successfully cultured from 12 out of 14 patients. Once a confluent monolayer was obtained, cells were enzymatically harvested and passaged to Petri culture dishes. These primary cell cultures were characterized by cytogenetic tests and gene expression analysis of diagnostic markers. These primary cell cultures revealed chromosome rearrangements and changes in their chromosome complement typical of tumoral cells. Additionally, Fluorescence in situ hybridization analysis demonstrated that three cultures exhibited EGFR amplification. Finally, expression profiles of CK7, NAPSIN A, TTF1, and P63 genes allowed in some cases to confirm sample tumor phenotype. These results demonstrate that primary lung cancer cell culture is possible from percutaneous puncture and provides an important biological source to asses and investigate the molecular mechanisms of lung cancer

    Role of RUNX2 transcription factor in epithelial mesenchymal transition in non-small cell lung cancer lung cancer : epigenetic control of the RUNX2 P1 promoter

    No full text
    Q2Q1Artículo original1-13Lung cancer has a high mortality rate in men and women worldwide. Approximately 15% of diagnosed patients with this type of cancer do not exceed the 5-year survival rate. Unfortunately, diagnosis is established in advanced stages, where other tissues or organs can be affected. In recent years, lineage-specific transcription factors have been associated with a variety of cancers. One such transcription factor possibly regulating cancer is RUNX2, the master gene of early and late osteogenesis. In thyroid and prostate cancer, it has been reported that RUNX2 regulates expression of genes important in tumor cell migration and invasion. In this study, we report on RUNX2/p57 overexpression in 16 patients with primary non-small cell lung cancer and/or metastatic lung cancer associated with H3K27Ac at P1 gene promoter region. In some patients, H3K4Me3 enrichment was also detected, in addition to WDR5, MLL2, MLL4, and UTX enzyme recruitment, members of the COMPASS-LIKE complex. Moreover, transforming growth factor-b induced RUNX2/p57 overexpression and specific RUNX2 knockdown supported a role for RUNX2 in epithelial mesenchymal transition, which was demonstrated through loss of function assays in adenocarcinoma A549 lung cancer cell line. Furthermore, RUNX2 increased expression of epithelial mesenchymal transition genes VIMENTIN, TWIST1, and SNAIL1, which reflected increased migratory capacity in lung adenocarcinoma cells
    corecore