72 research outputs found

    Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera

    Get PDF
    Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication

    Signalling plasticity and energy saving in a tropical bushcricket

    Get PDF
    Males of the tropical bushcricket Mecopoda elongata synchronize their acoustic advertisement signals (chirps) in interactions with other males. However, synchrony is not perfect and distinct leader and follower roles are often maintained. In entrainment experiments in which conspecific signals were presented at various rates, chirps displayed as follower showed notable signal plasticity. Follower chirps were shortened by reducing the number and duration of syllables, especially those of low and medium amplitude. The degree of shortening depended on the time delay between leader and follower signals and the sound level of the entraining stimulus. The same signal plasticity was evident in male duets, with the effect that the last syllables of highest amplitude overlapped more strongly. Respiratory measurements showed that solo singing males producing higher chirp rates suffered from higher metabolic costs compared to males singing at lower rates. In contrast, respiratory rate was rather constant during a synchronous entrainment to a conspecific signal repeated at various rates. This allowed males to maintain a steady duty cycle, associated with a constant metabolic rate. Results are discussed with respect to the preference for leader signals in females and the possible benefits males may gain by overlapping their follower signals in a chorus
    • 

    corecore