1,233 research outputs found

    Democratic particle motion for meta-basin transitions in simple glass-formers

    Full text link
    We use molecular dynamics computer simulations to investigate the local motion of the particles in a supercooled simple liquid. Using the concept of the distance matrix we find that the alpha-relaxation corresponds to a small number of crossings from one meta-basin to a neighboring one. Each crossing is very rapid and involves the collective motion of O(40) particles that form a relatively compact cluster, whereas string-like motions seem not to be relevant for these transitions. These compact clusters are thus candidates for the cooperatively rearranging regions proposed long times ago by Adam and Gibbs.Comment: 4 pages, 4 Postscript figure

    Quantum mechanics over a q-deformed (0+1)-dimensional superspace

    Full text link
    We built up a explicit realization of (0+1)-dimensional q-deformed superspace coordinates as operators on standard superspace. A q-generalization of supersymmetric transformations is obtained, enabling us to introduce scalar superfields and a q-supersymmetric action. We consider a functional integral based on this action. Integration is implemented, at the level of the coordinates and at the level of the fields, as traces over the corresponding representation spaces. Evaluation of these traces lead us to standard functional integrals. The generation of a mass term for the fermion field leads, at this level, to an explicitely broken version of supersymmetric quantum mechanics.Comment: 11 pages, Late

    Oscillatory regime in the Multidimensional Homogeneous Cosmological Models Induced by a Vector Field

    Full text link
    We show that in multidimensional gravity vector fields completely determine the structure and properties of singularity. It turns out that in the presence of a vector field the oscillatory regime exists in all spatial dimensions and for all homogeneous models. By analyzing the Hamiltonian equations we derive the Poincar\'e return map associated to the Kasner indexes and fix the rules according to which the Kasner vectors rotate. In correspondence to a 4-dimensional space time, the oscillatory regime here constructed overlap the usual Belinski-Khalatnikov-Liftshitz one.Comment: 9 pages, published on Classical and Quantum Gravit

    General Relativity as Classical Limit of Evolutionary Quantum Gravity

    Full text link
    We analyze the dynamics of the gravitational field when the covariance is restricted to a synchronous gauge. In the spirit of the Noether theorem, we determine the conservation law associated to the Lagrangian invariance and we outline that a non-vanishing behavior of the Hamiltonian comes out. We then interpret such resulting non-zero ``energy'' of the gravitational field in terms of a dust fluid. This new matter contribution is co-moving to the slicing and it accounts for the ``materialization'' of a synchronous reference from the corresponding gauge condition. Further, we analyze the quantum dynamics of a generic inhomogeneous Universe as described by this evolutionary scheme, asymptotically to the singularity. We show how the phenomenology of such a model overlaps the corresponding Wheeler-DeWitt picture. Finally, we study the possibility of a Schr\"odinger dynamics of the gravitational field as a consequence of the correspondence inferred between the ensemble dynamics of stochastic systems and the WKB limit of their quantum evolution. We demonstrate that the time dependence of the ensemble distribution is associated with the first order correction in \hbar to the WKB expansion of the energy spectrum.Comment: 23 pages, to appear on Class. Quant. Gra

    On the Gravitational Collapse of a Gas Cloud in Presence of Bulk Viscosity

    Full text link
    We analyze the effects induced by the bulk viscosity on the dynamics associated to the extreme gravitational collapse. Aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influence the fragmentation process. To this end we study the dynamics of a uniform and spherically symmetric cloud with corrections due to the negative pressure contribution associated to the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian, either the Eulerian motion of the system and we treat the asymptotic evolution in correspondence to a viscosity coefficient of the form ζ=ζ0ρnu\zeta=\zeta_0 \rho^{nu} (ρ\rho being the cloud density and ζ0=const.\zeta_0=const.). We show how, in the adiabatic-like behavior of the gas (i.e. when the politropic index takes values 4/3<γ5/34/3<\gamma\leq5/3), density contrasts acquire, asymptotically, a vanishing behavior which prevents the formation of sub-structures. We can conclude that in the adiabatic-like collapse the top down mechanism of structures formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1γ<4/31\leq\gamma<4/3) collapse because the sub-structures formation is yet present and outlines the same behavior as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible for the appearance of a threshold scale beyond which perturbations begin to increase.Comment: 13 pages, no figur

    The Averaging Problem in Cosmology and Macroscopic Gravity

    Full text link
    The averaging problem in cosmology and the approach of macroscopic gravity to resolve the problem is discussed. The averaged Einstein equations of macroscopic gravity are modified on cosmological scales by the macroscopic gravitational correlation tensor terms as compared with the Einstein equations of general relativity. This correlation tensor satisfies a system of structure and field equations. An exact cosmological solution to the macroscopic gravity equations for a constant macroscopic gravitational connection correlation tensor for a flat spatially homogeneous, isotropic macroscopic space-time is presented. The correlation tensor term in the macroscopic Einstein equations has been found to take the form of either a negative or positive spatial curvature term. Thus, macroscopic gravity provides a cosmological model for a flat spatially homogeneous, isotropic Universe which obeys the dynamical law for either an open or closed Universe.Comment: 8 pages, LaTeX, ws-ijmpa.cls, few style and typo corrections. Based on the plenary talk given at the Second Stueckelberg Workshop, ICRANet Coordinating Center, Pescara, Italy, September 3-7, 2007. To appear in International Journal of Modern Physics A (2008

    Lifshitz fermionic theories with z=2 anisotropic scaling

    Full text link
    We construct fermionic Lagrangians with anisotropic scaling z=2, the natural counterpart of the usual z=2 Lifshitz field theories for scalar fields. We analyze the issue of chiral symmetry, construct the Noether axial currents and discuss the chiral anomaly giving explicit results for two-dimensional case. We also exploit the connection between detailed balance and the dynamics of Lifshitz theories to find different z=2 fermionic Lagrangians and construct their supersymmetric extensions.Comment: Typos corrected, comment adde

    Backreaction of Cosmological Perturbations in Covariant Macroscopic Gravity

    Full text link
    The problem of corrections to Einstein's equations arising from averaging of inhomogeneities ("backreaction") in the cosmological context, has gained considerable attention recently. We present results of analysing cosmological perturbation theory in the framework of Zalaletdinov's fully covariant Macroscopic Gravity. We show that this framework can be adapted to the setting of cosmological perturbations in a manner which is free from gauge related ambiguities. We derive expressions for the backreaction which can be readily applied in \emph{any} situation (not necessarily restricted to the linear perturbations considered here) where the \emph{metric} can be brought to the perturbed FLRW form. In particular these expressions can be employed in toy models studying nonlinear structure formation, and possibly also in N-body simulations. Additionally, we present results of example calculations which show that the backreaction remains negligible well into the matter dominated era.Comment: 17 pages, 5 figures, revtex4; v2 -- typos fixed, 1 reference updated, to appear in Phys Rev

    Performance of the ARPA-SMR limited-area ensemble prediction system: two flood cases

    Get PDF
    The performance of the ARPA-SMR Limited-area Ensemble Prediction System (LEPS), generated by nesting a limited-area model on selected members of the ECMWF targeted ensemble, is evaluated for two flood events that occurred during September 1992. The predictability of the events is studied for forecast times ranging from 2 to 4 days. The extent to which floods localised in time and space can be forecast at high resolution in probabilistic terms was investigated. Rainfall probability maps generated by both LEPS and ECMWF targeted ensembles are compared for different precipitation thresholds in order to assess the impact of enhanced resolution. At all considered forecast ranges, LEPS performs better, providing a more accurate description of the event with respect to the spatio-temporal location, as well as its intensity. In both flood cases, LEPS probability maps turn out to be a very valuable tool to assist forecasters to issue flood alerts at different forecast ranges. It is also shown that at the shortest forecast range, the deterministic prediction provided by the limited area model, when run in a higher-resolution configuration, provides a very accurate rainfall pattern and a good quantitative estimate of the total rainfall deployed in the flooded regions

    Definition of a time variable with Entropy of a perfect fluid in Canonical Quantum Gravity

    Full text link
    The Brown-Kuchar mechanism is applied in the case of General Relativity coupled with the Schutz model for a perfect fluid. Using the canonical formalism and manipulating the set of modified constraints one is able to recover the definition of a time evolution operator, i.e. a physical Hamiltonian, expressed as a functional of gravitational variables and the entropy.Comment: 13 pages, no figures. To be published in Classical and Quantum Gravity. v2: major change
    corecore