1,071 research outputs found

    Dark Matter Prediction from Canonical Quantum Gravity with Frame Fixing

    Full text link
    We show how, in canonical quantum cosmology, the frame fixing induces a new energy density contribution having features compatible with the (actual) cold dark matter component of the Universe. First we quantize the closed Friedmann-Robertson-Walker (FRW) model in a sinchronous reference and determine the spectrum of the super-Hamiltonian in the presence of ultra-relativistic matter and a perfect gas contribution. Then we include in this model small inhomogeneous (spherical) perturbations in the spirit of the Lemaitre-Tolman cosmology. The main issue of our analysis consists in outlining that, in the classical limit, the non-zero eigenvalue of the super-Hamiltonian can make account for the present value of the dark matter critical parameter. Furthermore we obtain a direct correlation between the inhomogeneities in our dark matter candidate and those one appearing in the ultra-relativistic matter.Comment: 5 pages, to appear on Modern Physics Letters

    Mean field and pairing properties in the crust of neutron stars

    Full text link
    Properties of the matter in the inner crust of a neutron star are investigated in a Hartree-Fock plus BCS approximation employing schematic effective forces of the type of the Skyrme forces. Special attention is paid to differences between a homogenous and inhomogeneous description of the matter distribution. For that purpose self-consistent Hartree Fock calculations are performed in a spherical Wigner-Seitz cell. The results are compared to predictions of corresponding Thomas Fermi calculations. The influence of the shell structure on the formation of pairing correlations in inhomogeneous matter are discussed.Comment: 11 pages, 9 figure

    Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group

    Get PDF
    In this work we study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. This last item allows to study integrability as inherited from a system on the whole cotangent bundle, leading in a natural way to the AKS theory for integrable systems

    General Relativity as Classical Limit of Evolutionary Quantum Gravity

    Full text link
    We analyze the dynamics of the gravitational field when the covariance is restricted to a synchronous gauge. In the spirit of the Noether theorem, we determine the conservation law associated to the Lagrangian invariance and we outline that a non-vanishing behavior of the Hamiltonian comes out. We then interpret such resulting non-zero ``energy'' of the gravitational field in terms of a dust fluid. This new matter contribution is co-moving to the slicing and it accounts for the ``materialization'' of a synchronous reference from the corresponding gauge condition. Further, we analyze the quantum dynamics of a generic inhomogeneous Universe as described by this evolutionary scheme, asymptotically to the singularity. We show how the phenomenology of such a model overlaps the corresponding Wheeler-DeWitt picture. Finally, we study the possibility of a Schr\"odinger dynamics of the gravitational field as a consequence of the correspondence inferred between the ensemble dynamics of stochastic systems and the WKB limit of their quantum evolution. We demonstrate that the time dependence of the ensemble distribution is associated with the first order correction in ℏ\hbar to the WKB expansion of the energy spectrum.Comment: 23 pages, to appear on Class. Quant. Gra

    Lagrangian approach to a symplectic formalism for singular systems

    Get PDF
    We develop a Lagrangian approach for constructing a symplectic structure for singular systems. It gives a simple and unified framework for understanding the origin of the pathologies that appear in the Dirac-Bergmann formalism, and offers a more general approach for a symplectic formalism, even when there is no Hamiltonian in a canonical sense. We can thus overcome the usual limitations of the canonical quantization, and perform an algebraically consistent quantization for a more general set of Lagrangian systems.Comment: 30 page

    Oscillatory regime in the Multidimensional Homogeneous Cosmological Models Induced by a Vector Field

    Full text link
    We show that in multidimensional gravity vector fields completely determine the structure and properties of singularity. It turns out that in the presence of a vector field the oscillatory regime exists in all spatial dimensions and for all homogeneous models. By analyzing the Hamiltonian equations we derive the Poincar\'e return map associated to the Kasner indexes and fix the rules according to which the Kasner vectors rotate. In correspondence to a 4-dimensional space time, the oscillatory regime here constructed overlap the usual Belinski-Khalatnikov-Liftshitz one.Comment: 9 pages, published on Classical and Quantum Gravit

    Generating functional for the gravitational field: implementation of an evolutionary quantum dynamics

    Full text link
    We provide a generating functional for the gravitational field, associated to the relaxation of the primary constraints as extended to the quantum sector. This requirement of the theory, relies on the assumption that a suitable time variable exist, when taking the T-products of the dynamical variables. More precisely, we start from the gravitational field equations written in the Hamiltonian formalism and expressed via Misner-like variables; hence we construct the equation to which the T-products of the dynamical variables obey and transform this paradigm in terms of the generating functional, as taken on the theory phase-space. We show how the relaxation of the primary constraints (which correspond to break down the invariance of the quantum theory under the 4-diffeomorphisms) is summarized by a free functional taken on the Lagrangian multipliers, accounting for such constraints in the classical theory. The issue of our analysis is equivalent to a Gupta-Bleuler approach on the quantum implementation of all the gravitational constraints; in fact, in the limit of small ℏ\hbar, the quantum dynamics is described by a Schr\"odinger equation, as soon as the mean values of the momenta, associated to the lapse function and the shift vector, are not vanishing. Finally we show how, in the classical limit, the evolutionary quantum gravity reduces to General Relativity in the presence of an Eckart fluid, which corresponds to the classical counterpart of the physical clock, introduced in the quantum theory.Comment: 23 pages, no figures, to appear on International Journal of Modern Physics

    Dexamethasone induces apoptosis in pulmonary arterial smooth muscle cells

    Get PDF
    BACKGROUND: Dexamethasone suppressed inflammation and haemodynamic changes in an animal model of pulmonary arterial hypertension (PAH). A major target for dexamethasone actions is NF-ÎșB, which is activated in pulmonary vascular cells and perivascular inflammatory cells in PAH. Reverse remodelling is an important concept in PAH disease therapy, and further to its anti-proliferative effects, we sought to explore whether dexamethasone augments pulmonary arterial smooth muscle cell (PASMC) apoptosis. METHODS: Analysis of apoptosis markers (caspase 3, in-situ DNA fragmentation) and NF-ÎșB (p65 and phospho-IKK-α/ÎČ) activation was performed on lung tissue from rats with monocrotaline (MCT)-induced pulmonary hypertension (PH), before and after day 14–28 treatment with dexamethasone (5 mg/kg/day). PASMC were cultured from this rat PH model and from normal human lung following lung cancer surgery. Following stimulation with TNF-α (10 ng/ml), the effects of dexamethasone (10(−8)–10(−6) M) and IKK2 (NF-ÎșB) inhibition (AS602868, 0–3 ΌM (0-3×10(−6) M) on IL-6 and CXCL8 release and apoptosis was determined by ELISA and by Hoechst staining. NF-ÎșB activation was measured by TransAm assay. RESULTS: Dexamethasone treatment of rats with MCT-induced PH in vivo led to PASMC apoptosis as displayed by increased caspase 3 expression and DNA fragmentation. A similar effect was seen in vitro using TNF-α-simulated human and rat PASMC following both dexamethasone and IKK2 inhibition. Increased apoptosis was associated with a reduction in NF-ÎșB activation and in IL-6 and CXCL8 release from PASMC. CONCLUSIONS: Dexamethasone exerted reverse-remodelling effects by augmenting apoptosis and reversing inflammation in PASMC possibly via inhibition of NF-ÎșB. Future PAH therapies may involve targeting these important inflammatory pathways

    Dynamics of Matter in a Compactified Kaluza-Klein Model

    Full text link
    A longstanding problem in Kaluza-Klein models is the description of matter dynamics. Within the 5D model, the dimensional reduction of the geodesic motion for a 5D free test particle formally restores electrodynamics, but the reduced 4D particle shows a charge-mass ratio that is upper bounded, such that it cannot fit to any kind of elementary particle. At the same time, from the quantum dynamics viewpoint, there is the problem of the huge massive modes generation. We present a criticism against the 5D geodesic approach and face the hypothesis that in Kaluza-Klein space the geodesic motion does not deal with the real dynamics of test particle. We propose a new approach: starting from the conservation equation for the 5D matter tensor, within the Papapetrou multipole expansion, we prove that the 5D dynamical equation differs from the 5D geodesic one. Our new equation provides right coupling terms without bounding and in such a scheme the tower of massive modes is removed.Comment: 21 pages, to appear on IJMP

    Gauge theories as a geometrical issue of a Kaluza-Klein framework

    Full text link
    We present a geometrical unification theory in a Kaluza-Klein approach that achieve the geometrization of a generic gauge theory bosonic component. We show how it is possible to derive the gauge charge conservation from the invariance of the model under extra-dimensional translations and to geometrize gauge connections for spinors, thus we can introduce the matter just by free spinorial fields. Then, we present the applications to i)a pentadimensional manifold V4⊗S1V^{4}\otimes S^{1}, so reproducing the original Kaluza-Klein theory, unless some extensions related to the rule of the scalar field contained in the metric and the introduction of matter by spinors with a phase dependence from the fifth coordinate, ii)a seven-dimensional manifold V4⊗S1⊗S2V^{4}\otimes S^{1}\otimes S^{2}, in which we geometrize the electro-weak model by introducing two spinors for any leptonic family and quark generation and a scalar field with two components with opposite hypercharge, responsible of spontaneous symmetry breaking.Comment: 37 pages, no figure
    • 

    corecore