24 research outputs found
A Quantitative Method to Analyze Drosophila Pupal Eye Patterning
BACKGROUND:The Drosophila pupal eye has become a popular paradigm for understanding morphogenesis and tissue patterning. Correct rearrangement of cells between ommatidia is required to organize the ommatidial array across the eye field. This requires cell movement, cell death, changes to cell-cell adhesion, signaling and fate specification. METHODOLOGY:We describe a method to quantitatively assess mis-patterning of the Drosophila pupal eye and objectively calculate a 'mis-patterning score' characteristic of a specific genotype. This entails step-by-step scoring of specific traits observed in pupal eyes dissected 40-42 hours after puparium formation and subsequent statistical analysis of this data. SIGNIFICANCE:This method provides an unbiased quantitative score of mis-patterning severity that can be used to compare the impact of different genetic mutations on tissue patterning
Computer Simulation of Cellular Patterning Within the Drosophila Pupal Eye
We present a computer simulation and associated experimental validation of assembly of glial-like support cells into the interweaving hexagonal lattice that spans the Drosophila pupal eye. This process of cell movements organizes the ommatidial array into a functional pattern. Unlike earlier simulations that focused on the arrangements of cells within individual ommatidia, here we examine the local movements that lead to large-scale organization of the emerging eye field. Simulations based on our experimental observations of cell adhesion, cell death, and cell movement successfully patterned a tracing of an emerging wild-type pupal eye. Surprisingly, altering cell adhesion had only a mild effect on patterning, contradicting our previous hypothesis that the patterning was primarily the result of preferential adhesion between IRM-class surface proteins. Instead, our simulations highlighted the importance of programmed cell death (PCD) as well as a previously unappreciated variable: the expansion of cells' apical surface areas, which promoted rearrangement of neighboring cells. We tested this prediction experimentally by preventing expansion in the apical area of individual cells: patterning was disrupted in a manner predicted by our simulations. Our work demonstrates the value of combining computer simulation with in vivo experiments to uncover novel mechanisms that are perpetuated throughout the eye field. It also demonstrates the utility of the Glazier–Graner–Hogeweg model (GGH) for modeling the links between local cellular interactions and emergent properties of developing epithelia as well as predicting unanticipated results in vivo
Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant
BACKGROUND: Inositol 1,4,5trisphosphate (IP(3)) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab)) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab) alleles are phenotypically normal. However, the presence of one Plcd3(mNab) allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9)olt1Pas and the Plcd3(mNab) mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab) mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface
Antimitotic drugs in the treatment of cancer
Cancer is a complex disease since it is adaptive
in such a way that it can promote proliferation and
invasion by means of an overactive cell cycle and in turn
cellular division which is targeted by antimitotic drugs
that are highly validated chemotherapy agents. However,
antimitotic drug cytotoxicity to non-tumorigenic cells and
multiple cancer resistance developed in response to drugs
such as taxanes and vinca alkaloids are obstacles faced in
both the clinical and basic research field to date. In this
review, the classes of antimitotic compounds, their mechanisms
of action and cancer cell resistance to chemotherapy
and other limitations of current antimitotic compounds are
highlighted, as well as the potential of novel 17-β estradiol
analogs as cancer treatment.Medical Research Council of South Africa, the Research Committee of the Faculty of Health Sciences of the University of Pretoria, the Cancer association of South Africa and the National Research Foundation.http://link.springer.com/journal/280hb201
Cytochrome c-d regulates developmental apoptosis in the Drosophila retina
The role of cytochrome c (Cyt c) in caspase activation has largely been established from mammalian cell-culture studies, but much remains to be learned about its physiological relevance in situ. The role of Cyt c in invertebrates has been subject to considerable controversy. The Drosophila genome contains distinct cyt c genes: cyt c-p and cyt c-d. Loss of cyt c-p function causes embryonic lethality owing to a requirement of the gene for mitochondrial respiration. By contrast, cyt c-d mutants are viable but male sterile. Here, we show that cyt c-d regulates developmental apoptosis in the pupal eye. cyt c-d mutant retinas show a profound delay in the apoptosis of superfluous interommatidial cells and perimeter ommatidial cells. Furthermore, there is no apoptosis in mutant retinal tissues for the Drosophila homologues of apoptotic protease-activating factor 1 (Ark) and caspase 9 (Dronc). In addition, we found that cyt c-d—as with ark and dronc—regulates scutellar bristle number, which is known to depend on caspase activity. Collectively, our results indicate a role of Cyt c in caspase regulation of Drosophila somatic cells