3,726 research outputs found

    Decoherence in ion traps due to laser intensity and phase fluctuations

    Get PDF
    We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.Comment: 2 figures, submitted to PR

    A heralded quantum gate between remote quantum memories

    Full text link
    We demonstrate a probabilistic entangling quantum gate between two distant trapped ytterbium ions. The gate is implemented between the hyperfine "clock" state atomic qubits and mediated by the interference of two emitted photons carrying frequency encoded qubits. Heralded by the coincidence detection of these two photons, the gate has an average fidelity of 90+-2%. This entangling gate together with single qubit operations is sufficient to generate large entangled cluster states for scalable quantum computing

    Preparing encoded states in an oscillator

    Get PDF
    Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe

    Implementation of quantum gates and preparation of entangled states in cavity QED with cold trapped ions

    Get PDF
    We propose a scheme to perform basic gates of quantum computing and prepare entangled states in a system with cold trapped ions located in a single mode optical cavity. General quantum computing can be made with both motional state of the trapped ion and cavity state being qubits. We can also generate different kinds of entangled states in such a system without state reduction, and can transfer quantum states from the ion in one trap to the ion in another trap. Experimental requirement for achieving our scheme is discussed.Comment: To appear in J. Opt.

    Coherent Error Suppression in Multi-Qubit Entangling Gates

    Full text link
    We demonstrate a simple pulse shaping technique designed to improve the fidelity of spin-dependent force operations commonly used to implement entangling gates in trapped-ion systems. This extension of the M{\o}lmer-S{\o}rensen gate can theoretically suppress the effects of certain frequency and timing errors to any desired order and is demonstrated through Walsh modulation of a two-qubit entangling gate on trapped atomic ions. The technique is applicable to any system of qubits coupled through collective harmonic oscillator modes
    • …
    corecore