5 research outputs found

    The chemical homogeneity of sun-like stars in the solar neighborhood

    Get PDF
    The compositions of stars are a critical diagnostic tool for many topics in astronomy such as the evolution of our Galaxy, the formation of planets, and the uniqueness of the Sun. Previous spectroscopic measurements indicate a large intrinsic variation in the elemental abundance patterns of stars with similar overall metal content. However, systematic errors arising from inaccuracies in stellar models are known to be a limiting factor in such studies, and thus it is uncertain to what extent the observed diversity of stellar abundance patterns is real. Here we report the abundances of 30 elements with precisions of 2% for 79 Sun-like stars within 100 pc. Systematic errors are minimized in this study by focusing on solar twin stars and performing a line-by-line differential analysis using high-resolution, high-signal-to-noise spectra. We resolve [X/Fe] abundance trends in galactic chemical evolution at precisions of 10−3 dex Gyr−1 and reveal that stars with similar ages and metallicities have nearly identical abundance patterns. Contrary to previous results, we find that the ratios of carbon-to-oxygen and magnesium-tosilicon in solar-metallicity stars are homogeneous to within 10% throughout the solar neighborhood, implying that exoplanets may exhibit much less compositional diversity than previously thought. Finally, we demonstrate that the Sun has a subtle deficiency in refractory material relative to >80% of solar twins (at 2σ confidence), suggesting a possible signpost for planetary systems like our own

    The solar twin planet search

    No full text
    We present preliminary results from an ongoing radial velocity planet search around solar twins using the HARPS spectrograph. By limiting our sample to stars with Teff +/- 100 K, log(g) +/- 0.1 dex, and [Fe/H] +/- 0.1 dex of the solar values, we can obtain stellar elemental abundances [X/Fe] to a precision of 0.01 dex (Melendez et al. 2009). Our study is leveraging this unprecedented level of precision and the sensitivity of the HARPS instrument to investigate the connection between planet occurrence and stellar abundances at a new level of detail.Resumo n. 326.0

    The chemical homogeneity of sun-like stars in the solar neighborhood

    No full text
    The compositions of stars are a critical diagnostic tool for many topics in astronomy such as the evolution of our Galaxy, the formation of planets, and the uniqueness of the Sun. Previous spectroscopic measurements indicate a large intrinsic variation in the elemental abundance patterns of stars with similar overall metal content. However, systematic errors arising from inaccuracies in stellar models are known to be a limiting factor in such studies, and thus it is uncertain to what extent the observed diversity of stellar abundance patterns is real. Here we report the abundances of 30 elements with precisions of 2% for 79 Sun-like stars within 100 pc. Systematic errors are minimized in this study by focusing on solar twin stars and performing a line-by-line differential analysis using high-resolution, high-signal-to-noise spectra. We resolve [X/Fe] abundance trends in galactic chemical evolution at precisions of 10−3 dex Gyr−1 and reveal that stars with similar ages and metallicities have nearly identical abundance patterns. Contrary to previous results, we find that the ratios of carbon-to-oxygen and magnesium-tosilicon in solar-metallicity stars are homogeneous to within 10% throughout the solar neighborhood, implying that exoplanets may exhibit much less compositional diversity than previously thought. Finally, we demonstrate that the Sun has a subtle deficiency in refractory material relative to >80% of solar twins (at 2σ confidence), suggesting a possible signpost for planetary systems like our own

    The solar twin planet search : V. close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    Get PDF
    Context. More than two thousand exoplanets have been discovered to date. Of these, only a small fraction have been detected around solar twins, which are key stars because we can obtain accurate elemental abundances especially for them, which is crucial for studying the planet-star chemical connection with the highest precision. Aims. We aim to use solar twins to characterise the relationship between planet architecture and stellar chemical composition. Methods. We obtained high-precision (1 ms1) radial velocities with the HARPS spectrograph on the ESO 3.6 m telescope at La Silla Observatory and determined precise stellar elemental abundances ( 0.01 dex) using spectra obtained with the MIKE spectrograph on the Magellan 6.5 m telescope. Results. Our data indicate the presence of a planet with a minimum mass of 26 4 Earth masses around the solar twin HIP 68468. The planet is more massive than Neptune (17 Earth masses), but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 0.8 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet candidate discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 0.4 Gyr) and the abundance ratio [Y/Mg] (6.4 0.8 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a nonlocal thermodynamic equilibrium Li abundance of 1.52 0.03 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log (R0 HK) (–5.05) and low jitter (<1 ms1). Engulfment of a rocky planet of 6 Earth masses can explain the enhancement in both lithium and the refractory elements. Conclusions. The super-Neptune planet candidate is too massive for in situ formation, and therefore its current location is most likely the result of planet migration that could also have driven other planets towards its host star, enhancing thus the abundance of lithium and refractory elements in HIP 68468. The intriguing evidence of planet accretion warrants further observations to verify the existence of the planets that are indicated by our data and to better constrain the nature of the planetary system around this unique star

    The solar twin planet search : V. close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    No full text
    Context. More than two thousand exoplanets have been discovered to date. Of these, only a small fraction have been detected around solar twins, which are key stars because we can obtain accurate elemental abundances especially for them, which is crucial for studying the planet-star chemical connection with the highest precision. Aims. We aim to use solar twins to characterise the relationship between planet architecture and stellar chemical composition. Methods. We obtained high-precision (1 ms1) radial velocities with the HARPS spectrograph on the ESO 3.6 m telescope at La Silla Observatory and determined precise stellar elemental abundances ( 0.01 dex) using spectra obtained with the MIKE spectrograph on the Magellan 6.5 m telescope. Results. Our data indicate the presence of a planet with a minimum mass of 26 4 Earth masses around the solar twin HIP 68468. The planet is more massive than Neptune (17 Earth masses), but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 0.8 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet candidate discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 0.4 Gyr) and the abundance ratio [Y/Mg] (6.4 0.8 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a nonlocal thermodynamic equilibrium Li abundance of 1.52 0.03 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log (R0 HK) (–5.05) and low jitter (<1 ms1). Engulfment of a rocky planet of 6 Earth masses can explain the enhancement in both lithium and the refractory elements. Conclusions. The super-Neptune planet candidate is too massive for in situ formation, and therefore its current location is most likely the result of planet migration that could also have driven other planets towards its host star, enhancing thus the abundance of lithium and refractory elements in HIP 68468. The intriguing evidence of planet accretion warrants further observations to verify the existence of the planets that are indicated by our data and to better constrain the nature of the planetary system around this unique star
    corecore