21 research outputs found

    Functions of Aβ, sAPPα and sAPPβ : similarities and differences

    No full text
    International audienceAmyloid peptide (Aβ) is derived from the cleavage of amyloid precursor protein (APP), which also generates the soluble peptide APPβ (sAPPβ). An antagonist and major APP metabolic pathway involves cleavage by alpha secretase, which releases sAPPα. Although soluble Aβ oligomers are neurotoxic, Aβ monomers share similar properties with sAPPα. These include neurotrophic and neuroprotective effects, as well as stimulation of neural-progenitor proliferation. The properties of Aβ monomers and the neurotrophic capacity of sAPPβ to stimulate axonal outgrowth suggest that Aβ production is not deleterious per se. Consequently, therapeutic strategies for Alzheimer's disease that are targeted at Aβ-cleaving enzymes should modulate rather than inhibit Aβ generation. These strategies should focus on the factors that induce the conversion of Aβ monomers into toxic soluble oligomers. Another interesting therapeutic approach is to focus on the mechanisms of the different properties of sAPPα. Indeed, increasing sAPPα levels could shift proliferating cells towards tumorigenesis. In contrast to its neuroprotective effects, sAPPα is also able to activate microglia, leading to neurotoxicity. Understanding the mechanisms that underlie the different properties of sAPPα could therefore lead to the development of therapeutic strategies against Alzheimer's disease, which could be curative as well as preventive

    The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer's disease

    Get PDF
    For the last 20 years, the "amyloid cascade hypothesis" has dominated research aimed at understanding, preventing, and curing Alzheimer's disease (AD). During that time researchers have acquired an enormous amount of data and have been successful, more than 300 times, in curing the disease in animal model systems by treatments aimed at clearing amyloid deposits. However, to date similar strategies have not been successful in human AD patients. Hence, before rushing into further clinical trials with compounds that aim at lowering amyloid-beta (Aβ) levels in increasingly younger people, it would be of highest priority to re-assess the initial assumption that accumulation of Aβ in the brain is the primary pathological event driving AD. Here we question this assumption by highlighting experimental evidence in support of the alternative hypothesis suggesting that APP and Aβ are part of a neuronal stress/injury system, which is up-regulated to counteract inflammation/oxidative stress-associated neurodegeneration that could be triggered by a brain injury, chronic infections, or a systemic disease. In AD, this protective program may be overridden by genetic and other risk factors, or its maintenance may become dysregulated during aging. Here, we provide a hypothetical example of a hypothesis-driven correlation between car accidents and airbag release in analogy to the evolution of the amyloid focus and as a way to offer a potential explanation for the failure of the AD field to translate the success of amyloid-related therapeutic strategies in experimental models to the clinic
    corecore