20 research outputs found

    Caracterización de microencapsulados aplicados sobre materiales textiles

    Full text link
    La aplicación de microencapsulados a los textiles no es una aplicación que esté tan extendida como en otros campos, como puedan ser las industrias farmacéuticas, agroalimentarias y cosméticas. Los microencapsulados son una nueva forma de obtener acabados textiles que resultan de la aplicaciónsobre los tejidos de estos productos lo que proporciona "acabados no convencionales". La microencapsulación ha permitido la obtención de tejidos con fragancias y perfumes resistentes a los lavados. Los microencapsulados para aplicaciones textiles, a diferencia de las utilizadas en farmacia, no necesitan membranas solubles, salvo excepciones, ya que los principios activos de los núcleos de las microcápsulas, se liberan por rotura de la cápsula, o por permeabilidad de la misma; esto supone una diferencia importante con el resto de fabricaciones de microcápsulas, así como en las características de los polímeros a utilizar para las membranas, lo que nos proporciona un motivo de estudio. El uso continuado, de tejidos con microencapsulados conteniendo una materia activ cuyo efecto se manifiesta por rotura de algunas capsulas, evidentemente, genera una degradación y una pérdida del efecto transmitido y será todavía mayor, si se le suman los efectos de los mantenimientos. En este trabajo se ha determinado la degradación de las microcápsulas (sobre tejidos), en función del uso y el mantenimiento. Para ello se han preparado tejidos con concentraciones variables de un mismo producto (aroma microencapsulado) y sometido a diferentes ensayos. En la aplicación de los microencapsulados sobre los textiles, se han realizado ensayos, exclusivamente por impregnación, puesto que es el procedimiento que mejores resultados nos ha proporcionado. Como trabajo previo se han analizado las características de los productos microencapsulados comerciales, determinando el tamaño medio de las microcápsulas, la cantidad de materia activa por eliminación de agua, su comportamiento térmico mediante calorimetría diMonllor Pérez, P. (2007). Caracterización de microencapsulados aplicados sobre materiales textiles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1896Palanci

    BLEACHING NEPTUNE BALLS

    Get PDF
    Posidonia Oceanic is a seaweed from Mediterranean Sea and it is more concentrated at the Balerian SEA. This implies the Valencian Community also. It forms vaste underwater meadows in the sea and are part of the Mediterranean ecosystem. It is a sea-grass specie with fruits and flowers. Leaves are ribbon-like and they grow in winter and at the end of summer some of them are separated and arrive to some sea line. Fuit is separated and can floate, it is known as “the olive of the sea” mainly in Italy, or as the Neptune Balls. As it can be used in different fields, it is is being studied in order ro have the precitice tests. Some authors have reported the manufacturing of fully bio-based comites with a gluten matrix by hot-press molding. And it has been considered as an effective insulator for building industry or even though to determine the presence of mercure in the Mediterranean sea some years ago. As many applications can be designed from that fibers, it has been considered to be bleached in order to used them in fashionable products. Consequently, its original brown color is not the most suitable one and it should be bleached as many other cellulosic fibers. The aim of this paper is to bleache neptune balls however, the inner fibers were not accessible at all and it implied not to bleach the inner fibers in the neptune ball. Further studiesd will consider bleaching the individualized fibers

    Thermal behaviour of microencapsulated fragances on cotton fabrics

    Full text link
    Microencapsulated products are very common in some fields, such as pharmacy, and the textile industry has recently incorporated them into their products. First, this research assessed the presence of fragrance microcapsules on cotton fabric using different padding applications and evaluated them using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). When the OH stretching region between 3700-3000 cm(-1) from spectra was examined, we proposed some area ratios to quantify the microcapsules' presence on the fabric. The ratios proposed showed that when the concentration of microcapsules in the padding bath increased, their value increased too. Secondly, we analyzed the effect that thermal treatment can cause on microcapsules. This was undertaken using hot air at 120 degrees C, 140 degrees C and 160 degrees C, or by ironing the fabric impregnated with microcapsules at 110 degrees C, 150 degrees C and 200 degrees C, by ironing 1, 5 and 10 times on the analyzed zone. It was found that when the temperature was higher than 120 degrees C, microcapsules were deflated and damaged. This could be seen using SEM images and checked using FTIR analysis.The authors are grateful to COLOR CENTER Company for kindly providing the microencapsulated samples used in this study. The Universidad Politecnica de Valencia also deserves acknowledgement for its financial support in the form of 'Interdisciplinary projects research line' for the research project from which these results derive. We acknowledge central service of microscopy, and the R&D+i Linguistic Assistance Office, at the Universidad Politecnica de Valencia for their help in revising and correcting this paper.Monllor Pérez, P.; Sánchez Nacher, L.; Cases Iborra, FJ.; Bonet Aracil, MA. (2009). Thermal behaviour of microencapsulated fragances on cotton fabrics. Textile Research Journal. 79(4):365-380. doi:10.1177/0040517508097520S365380794Hong, K., & Park, S. (1999). Melamine resin microcapsules containing fragrant oil: synthesis and characterization. Materials Chemistry and Physics, 58(2), 128-131. doi:10.1016/s0254-0584(98)00263-6Chao-Xia, W., & Shui-Lin, C. (2004). Anchoring beta-cyclodextrin to retain fragrances on cotton by means of heterobifunctional reactive dyes. Coloration Technology, 120(1), 14-18. doi:10.1111/j.1478-4408.2004.tb00200.xNelson, G. (2008). Microencapsulates in textile coloration and finishing. Review of Progress in Coloration and Related Topics, 21(1), 72-85. doi:10.1111/j.1478-4408.1991.tb00082.xNelson, G. (2008). Microencapsulation in textile finishing. Review of Progress in Coloration and Related Topics, 31(1), 57-64. doi:10.1111/j.1478-4408.2001.tb00138.xNelson, G. (2002). Application of microencapsulation in textiles. International Journal of Pharmaceutics, 242(1-2), 55-62. doi:10.1016/s0378-5173(02)00141-2Park, S.-J., Shin, Y.-S., & Lee, J.-R. (2001). Preparation and Characterization of Microcapsules Containing Lemon Oil. Journal of Colloid and Interface Science, 241(2), 502-508. doi:10.1006/jcis.2001.7727Xu, Y., & Du, Y. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics, 250(1), 215-226. doi:10.1016/s0378-5173(02)00548-3Ré, M. ., & Biscans, B. (1999). Preparation of microspheres of ketoprofen with acrylic polymers by a quasi-emulsion solvent diffusion method. Powder Technology, 101(2), 120-133. doi:10.1016/s0032-5910(98)00163-6Moya, S., Sukhorukov, G. ., Auch, M., Donath, E., & Möhwald, H. (1999). Microencapsulation of Organic Solvents in Polyelectrolyte Multilayer Micrometer-Sized Shells. Journal of Colloid and Interface Science, 216(2), 297-302. doi:10.1006/jcis.1999.6286Wilson, R. C., & Pfohl, W. F. (2000). Study of cross-linking reactions of melamine/formaldehyde resin with hydroxyl functional polyester by generalized 2-D infrared spectroscopy. Vibrational Spectroscopy, 23(1), 13-22. doi:10.1016/s0924-2031(99)00072-7Bhandari, B., D’Arcy, B., & Young, G. (2001). Flavour retention during high temperature short time extrusion cooking process: a review. International Journal of Food Science and Technology, 36(5), 453-461. doi:10.1046/j.1365-2621.2001.00495.xYuan, L., Liang, G., Xie, J., & He, S.-B. (2007). Synthesis and characterization of microencapsulated dicyclopentadiene with melamine–formaldehyde resins. Colloid and Polymer Science, 285(7), 781-791. doi:10.1007/s00396-006-1621-5Luo, W., Yang, W., Jiang, S., Feng, J., & Yang, M. (2007). Microencapsulation of decabromodiphenyl ether by in situ polymerization: Preparation and characterization. Polymer Degradation and Stability, 92(7), 1359-1364. doi:10.1016/j.polymdegradstab.2007.03.004Monllor, P., Bonet, M. A., & Cases, F. (2007). Characterization of the behaviour of flavour microcapsules in cotton fabrics. European Polymer Journal, 43(6), 2481-2490. doi:10.1016/j.eurpolymj.2007.04.004Muzzarelli, C., Stanic, V., Gobbi, L., Tosi, G., & Muzzarelli, R. A. A. (2004). Spray-drying of solutions containing chitosan together with polyuronans and characterisation of the microspheres. Carbohydrate Polymers, 57(1), 73-82. doi:10.1016/j.carbpol.2004.04.00

    Increasing hydration of the epidermis by microcapsules in sterilized products

    Full text link
    This is the accepted version of the following article: Gisbert, J., Ibañez, F., Bonet, M., Monllor, P., Díaz, P. and Montava, I. (2009), Increasing hydration of the epidermis by microcapsules in sterilized products. J. Appl. Polym. Sci., 113: 2282–2286, which has been published in final form at http://dx.doi.org/10.1002/app.30210.Some nonserious skin infections can be treated by hydration and antibacterial control. Microcapsules containing aloe-chitin are often used to treat this kind of problem. Microcapsules were applied to cotton fabrics by padding and sleeves were prepared. A hypoallergenic test was applied to the microcapsule emulsion and hydration of the epidermis was evaluated by capacitance methods. The fabric was sterilized by electron beam treatment to satisfy the antibacterial requisite. The results showed that the aloe is transferred from the fabric to the skin, increasing the level of skin hydration. The electron beam method was also shown to be effective for bacteria and fungi and had no effect on the microcapsule properties. It can, therefore, be confirmed that electron beam sterilization has no harmful effects on the type of microcapsule used in this study. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 2282-2286, 2009Gisbert Paya, J.; Ibañez García, F.; Bonet Aracil, MA.; Monllor Pérez, P.; Díaz-García, P.; Montava Seguí, IJ. (2009). Increasing hydration of the epidermis by microcapsules in sterilized products. Journal of Applied Polymer Science. 113(4):2282-2286. doi:10.1002/app.30210S22822286113

    Improvement of microcapsules adhesion to fabrics

    Full text link
    [EN] The presence of microcapsules has increased in the textile field. They have been applied as a possible means of introducing new products to textiles, such as fragrances, antibiotics, skin hydrants, etc. This work studied the influence of resin on the adhesion of microcapsules to cotton fabrics. To paste microcapsules to fabrics, they should be in contact with a bath which contains microcapsules, resin and water. Different concentrations of resin were applied to a fragrance microcapsule bath by impregnation. This research focuses on determining the influence of resin quantity on the microcapsule resistance to washing out of the fabrics during washing treatments. Two experimental techniques, scanning electron microscopy and counter apparatus, were used to determinate this influence. We conclude that with a higher quantity of resin, more microcapsules remain on the fabric surface. It was shown that longer microcapsules are washed out of the fabric faster than smaller microcapsules.Financial support from the Valencian Regional Government in the program of IMPIVA for increasing competitiveness in Valencia Companies ref: IMPCNG/2008/5, is gratefully acknowledged. The authors are also grateful to COLOR CENTER Company for kindly providing the microencapsulated samples used in this study.Monllor Pérez, P.; Capablanca Francés, L.; Gisbert Paya, J.; Díaz-García, P.; Montava Seguí, IJ.; Bonet Aracil, MA. (2010). Improvement of microcapsules adhesion to fabrics. Textile Research Journal. 80(7):631-635. https://doi.org/10.1177/004051750935644463163580

    A comparison between acrilic resin and butanetetracarcoxylic acid used to bind TiO2 nanoparticles to cotton fabrics

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10570-015-0545-y[EN] In order to apply finishing particles onto fabrics, several methods such as, padding, bath exhaustion, spraying and foaming can be used. In this research, spray treatment is compared to padding when applying TiO2 nanoparticles onto textiles. Cotton fabric surfaces were observed by scanning electron microscopy and characterized by Fourier Transform Infrared spectroscopy and energy dispersive using X-ray (EDX). EDX technique showed that it was a suitable method to detect the presence of Ti particles on the fabric surface. We confirm that the fabric treated by padding contained procedure a higher quantity of Ti particles than the one treated by spraying. On the other hand, we compared two different auxiliary products to bind the particles onto the fibers, an acrylic resin and the polycarboxylic acid 1,2,3,4-butanetetracarboxylic acid (BTCA) in the presence of sodium hypophosphite. We used EDX to evaluate the effectiveness of both binders after washing. Compared with samples without a binder treatment, many more TiO2 particles were retained on the fibers with the acrylic resin after five washing cycles. When treated with BTCA, however, the results were comparable to the sample with no binder.Bonet Aracil, MA.; Bou-Belda, E.; Monllor Pérez, P.; Gisbert Paya, J.; Díaz-García, P.; Montava Seguí, IJ. (2015). A comparison between acrilic resin and butanetetracarcoxylic acid used to bind TiO2 nanoparticles to cotton fabrics. Cellulose. 22(2):1347-1354. doi:10.1007/s10570-015-0545-yS13471354222Bonet MA, Capablanca L, Monllor P, Díaz P, Montava I (2012) Studying bath exhaustion as a method to apply microcapsules on fabrics. J Text Inst 103(6):629–635Bou-Belda E, Bonet M, Monllor P, Gisbert J (2013) Variación del color de las fibras tratadas con ácidos policarboxílicos. Dyna 88:114–119Cheema HA, El-Shafei A, Hauser PJ (2013) Conferring flame retardancy on cotton using novel halogen-free flame retardant bifunctional monomers. Carbohyd Polym. doi: 10.1016/j.carbpol.2012.09.081Chen X, Liu Y, Shi H, Wang X, Qi K, Zhou X, Xin JH (2010) Carboxymethyl chitosan coating to block photocatalytic activity of TiO2 nanoparticles. Text Res J 80(20):2214–2222Colleoni C, Massafra MR, Rosace G (2012) Photocatalytic properties and optical characterization of cotton fabric coated via sol–gel with noncrystalline TiO2 modified with poly(ethylene glycol). Surf Coat Technol 207:79–88Dehadabi VA, Buschmann HJ, Gutmann JS (2012) Durable press finishing of cotton with polyamino carboxylic acids. Carbohydr Polym 89:558–563Dong Y, Bai Z, Liu R, Zhu T (2007) Decomposition of indoor ammonia with TiO2-loaded cotton woven fabrics prepared by different textile finishing methods. Atmos Environ 41(15):3182–3192Franklin WE, Madacsi JP, Rowland SP (1972) Recuperable durable-press fabrics. Part I: polycarboxylic acids as coreactant curing catalysts with N-methylol reagents. Text Res J 42(5):274–280Ibrahim NA, Refaie R, Ahmed AF (2010) Novel approach for attaining cotton fabric with multi-functional properties. J Ind Text 40(1):65–82Karimi L, Mirjalili M, Yazdansshenas ME, Nazari A (2010) Effect of nano TiO2 on self-cleaning property of crosslinking cotton fabric with succinic acid under UV irradiation. Photochem Photobiol 86:1030–1037Kim YH, Nam CW, Choi JW, Jang J (2003) Durable antimicrobial treatment of cotton fabrics using N-(2-Hydroxy)propyl-3-trimethylammonium chitosan chloride and polycarboxylic acid. J Appl Polym Sci 88:1567–1572Kuo Y, Su T, Kung F, Wu T (2011) A study of parameter setting and characterization of visible-light driven nitrogen-modified comercial TiO2 photocatalysts. J Hazard Mater 190:938–944Lam YL, Kan CW, Yuen CWM (2010) Wrinkle-resistant finishing of cotton fabric with BTCA-the effect of co-catalyst. Text Res J 81(5):482–493Martel B, Morcellet M, Ruffin D, Vinet F, Weltrowski M (2002) Capture and controlled release of fragrances by CD finished textiles. J Incl Phenom Macrocycl Chem 44(1–4):439–442Mo SD, Ching WY (1995) Electronic and optical-properties of 3 phases of titanium-dioxide—rutile, anatase, and brookite. Phys Rev B 51(19):13023–13032Mongkholrattanasit R, Krystufek J, Wiener J, Vikova M (2011) Dyeing, fastness, and UV protection properties of silk and wool fabrics dyed with eucalyptus leaf extract by the exhaustion process. Fibres Text East Eur 19(3):94–99Monllor P, Capablanca L, Bonet M, Gisbert J, Díaz P, Montava I (2010) Improvement of microcapsules adhesion to fabrics. Text Res J 80(7):631–635Montazer M, Seifollahzadeh S (2011) Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem Photobiol 87:877–883Montazer M, Lessan F, Moghadam MB (2012) Nano-TiO2/maleic acid/triethanol amine/sodium hypophosphite colloid on cotton to produce cross-linking and self-cleaning properties. J Text Inst 103(8):795–805Nazari A, Montazer M, Rashidi A, Yazdanshenas M, Anary-Abbasinejad M (2009) Nano TiO2 photo-catalyst and sodium hypophosphite for crosslinking cotton with poly carboxylic acids under UV and high temperature. Appl Catal A Gen 371:10–16Pan GT, Huang CM, Chen LC, Shiu WT (2006) Immobilitzation of TiO2 onto nonwoven fiber textile by silica sol: photocatalytic activity and duradibility studies. Environ Eng Manag J 16(6):413–420Peng H, Yang CQ, Wang X, Wang S (2012) The combination of itaconic acid and sodium hypophosphite as a new cross-linking system for cotton. Ind Eng Chem Res 51:11301–11311Qu Q, Geng H, Peng R, Cui Q, Gu X, Li F, Wang M (2010) Chemically binding carboxylic acids onto TiO2 nanoparticles with adjustable coverage by solvothermal strategy. Langmuir 26(12):9539–9546Sarier N, Onder E (2012) Organic phase change materials and their textile applications: an overview. Thermochim Acta 540:7–60Socrates G (1997) Infrared caharcteristic group frequencies. Wiley, HobokenSpecosa MM, Garcíac JJ, Torneselloc J, Marina P, Della Vecchiab M, Defain Tesorierob MV, Hermida LG (2010) Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg 104(10):653–658Sricharussin W, Ryo-Aree W, Intasen W, Poungraksakirt S (2004) Effect of boric acid and BTCA on tensile strength loss of finished cotton fabrics. Text Res J 74(6):475–480Sunderesan K, Sivakumar A, Vigneswaran C, Ramachandran T (2011) Influence of nano titanium dioxide finish, prepared by sol-gel technique, on the ultraviolet, antimicrobial, and self-cleaning characteristics of cotton fabrics. J Ind Text 41(3):259–277Trask-Morrell BJ, Andrews BAK (1994) Thermoanalytical study of durable press reactant levels on cotton fabrics. Part I: nonformaldehyde polycarboxylic acids. Text Res J 64(12):729–736Wang CX, Chen SL (2006) Surface treatment of cotton using β-cyclodextrins sol–gel method. Appl Surf Sci 252(18):6348–6352Wanga CC, Chen CC (2005) Physical properties of the crosslinked cellulose catalyzed with nanotitanium dioxide under UV irradiation and electronic field. Appl Catal A Gen 293:171–179Wu D, Long M, Zhou J, Cai W, Zhu X, Chen C, Wu Y (2009) Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surf Coat Tech 203:3728–3733Yang CQ (2001) FTIR Spectroscopy study of ester crosslinking of cotton cellulose catalyzed by sodium hypophosphite. Text Res J 71(3):201–206Yang H, Zhu S (2004) Studying the mechanisms of titanium dioxide as ultraviolet bloking additive for films and fabrics by an improved scheme. J Appl Polym Sci 92:3201–321

    GIITEX: investigación en la industria textil

    Full text link
    [ES] El GIITEX es un grupo de investigación de la Universidad Politécnica de Valencia. Centra su labor investigación en todas aquellas investigaciones que están relacionadas con el sector textil. El la actualidad el GIITEX trabaja en las líneas de investigación siguientes: adaptación de nuevas tecnologías a procesos productivos textiles; biomateriales y procesos biotecnológicos de aplicación textil; análisis de la capacidad de cosido de un hilo; funcionalización de textiles mediante la adición de micropartículas nanopartículas y/o sensores; sistema de indicadores para la gestión en empresas textiles; desarrollo y caracterización de microcápsulas.Bonet Aracil, MA.; Bou-Belda, E.; Montava Seguí, IJ.; Díaz-García, P.; Monllor Pérez, P. (2013). GIITEX: investigación en la industria textil. Compobell, S.L. http://hdl.handle.net/10251/74263

    Exploring reuse of industrial wastewater from exhaust dyebaths by solar-based photo-Fenton treatment

    Full text link
    The aim of the research under discussion in the present paper is to study the decolorization and mineralization of textile industrial wastewaters from exhaust dyebaths by means of a solar photo-Fenton treatment. The exhaust dyebaths were grouped according to the fibers and dyeing recipes used, so as to verify the effectiveness of the photo-Fenton treatment on each dyeing process separately. Next, the results previously achieved were compared to those obtained by mixing all the exhaust baths together, as is common practice when treating the industrial textile effluents from dyeing and finishing procedures. After their neutralization and filtration, photo-Fenton-treated exhaust dyebaths and mixtures were reused to prepare laboratory dyeing samples. These techniques on the reuse of wastewaters were tested on several fibers by using the same dyeing procedure that was originally applied, as well as in different dyeing processes and for most fiber types. The results achieved showed that the reutilization of the aforementioned effluents, either in new exhaust dyebaths or in some other textile industrial operations, was of some considerable importance. Water consumption would be significantly reduced as well as the wastewater levies for the firms. Furthermore, the contaminating effect of the industrial effluents to be dealt with would be also diminished, reaping environmental and economic benefits.Sanz Carbonell, JF.; Monllor Pérez, P.; Vicente Candela, R.; Amat Payá, AM.; Arques Sanz, A.; Bonet Aracil, MA. (2013). Exploring reuse of industrial wastewater from exhaust dyebaths by solar-based photo-Fenton treatment. Textile Research Journal. 83(13):1325-1332. doi:10.1177/0040517512467061S13251332831

    Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11356-016-7889-1In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.This work was realized with the financial support of a Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (project number 645551). Financial support from Spanish Government (CTQ2015-69832-C4-4-R) is gratefully acknowledged. The authors acknowledge the financial support of the Generalitat Valenciana, Conselleria d’Educació, Cultura i Esport (GV/AICO/2015/124) and CTQ2015-69832-C4-4-R.García-Negueroles, P.; Bou-Belda, E.; Santos-Juanes Jordá, L.; Amat Payá, AM.; Arques Sanz, A.; Vercher Pérez, RF.; Monllor Pérez, P.... (2017). Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances. Environmental Science and Pollution Research. 24(14):12664-12672. https://doi.org/10.1007/s11356-016-7889-1S12664126722414Ali N, Hameed A et al (2009) Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J Hazard Mater 164(1):322–328Amat AM, Arques A, Miranda MA, Seguí S (2004) Photo-Fenton reaction for the abatement of commercial surfactants in a solar pilot plant. Sol Energy 77:559–566Amorim CC, Leão MMD, Moreira RFPM, Fabris JD, Henriques AB (2013) Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes. Chem Eng J 224:59–66Anjaneyulu Y, Sreedhara Chary N et al (2005) Decolorization of industrial effluents: available methods and emerging technologies. Environmental Science and Biotechnology 4(4):245–273Arslan-Alaton I, Tureli G, Olmez-Hanci T (2009) Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A Chem 202:142–153Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55:35–43Baba Y, Yatagai T, Harada T, Kawase Y (2015) Hydroxyl radical generation in the photo-Fenton process: effects of carboxylic acids on iron redox cycling. Chemical Engineering Journal, Volume 277(1):229–241Bakshi DK, Sharma P (2003) Genotoxicity of textile dyes evaluated with Ames test and rec-assay. J Environ Pathol Toxicol Oncol 22:10Blanco J, Torrades F, Morón M, Brouta-Agnesá M, García-Montaño J (2014) Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: feasibility of reuse in dyeing processes. Chem Eng J 240:469–475Chen Q, Yang Y, Zhou M, Liu M, Yu S, Gao C (2015) Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration. Original research article. J Hazard Mater 284(2):121–129dos Santos AB, Cervantes FJ, van Lier J (2007) Review paper on current technologies for decolorisation of textile wastewater: perspectives for anaerobic biotechnology. Bioresour Technol 37:315–377Durán A, Monteagudo JM, Amores E (2008) Solar photo-Fenton degradation of reactive blue 4 in a CPC reactor. Appl Catal B Environ 80(1–2):42–50Ergas S, Therriault B, Reckhow D (2006) Evaluation of water reuse technologies for the textile industry. J Environ Eng 132:315–323García Ballesteros S, Costante R, Vicente R, Mora M, Amat AM, Arques A, Carlos L, García Einschlag FS (2016) Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Ptotochem Photobiol Sci in press. doi: 10.1039/c6pp00236fGhaly AE, Ananthashankar R, Alhattab M, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 05:1–18Ghoreishian SM, Maleknia L, Mirzapour H, Norouzi M (2013) Antibacterial properties and color fastness of silk fabric dyed with turmeric extract. Fiber Polym 14(2):201–207. doi: 10.1007/s12221-013-0201-9Gomis J, Vercher RF, Amat AM, Mártire DO, González MC, Bianco Prevot A, Montoneri E, Arques A, Carlos L (2013) Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: sensitizing effect and photo-Fenton-like process. Catal Today 209:176–180Gomis J, Carlos L, Bianco Prevot A, Teixeira ACSC, Mora M, Amat AM, Vicente R, Arques A (2015) Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: optimization of operational variables. Catal Today 240:39–45Gupta D, Khare SK, Laha A (2004) Antimicrobial properties of natural dyes against gram negative bacteria. Color Technol 120(4):167–171. doi: 10.1111/j.1478-4408.2004.tb00224.xHan S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 64(2):157–161. doi: 10.1016/j.dyepig.2004.05.008Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013) Assessment of the Fe (III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. Environ Sci Technol 47(4):1952–1959Ince NH, Tezcanh G (1999) Treatability of textile dye-bath effluents by advanced oxidation: preparation for reuse. Water Sci Technol 40(1):183–190ISO 6332:1988. Water quality: determination of iron, spectrometric method using 1,10-phenanthrolineISO 105-X12:2001. Textiles—test for color fastness—part X12: color fastness to rubbing.ISO 105-J01:2009. Textiles. Ensayos de solidez del color. Parte J01: Principios generales para la medición del color de superficies.ISO 105-J03:2009. Textiles. Tests for colour fastness. Part J03: calculation of colour differencesISO 105-C06:2010. Textiles—tests for color fastness—part C06: color fastness to domestic and commercial laundering.ISO 7887:2011. Water quality: examination and determination of colour. Method B.Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Review Article Biotechnology Advances 33(8):1697–1714Maezono T, Tokumura M, Sekine M, Kawase Y (2011) Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye orange II. Chemosphere 82(10):1422–1430Malato S, Blanco J, Cáceres J, Fernández-Alba AR, Agüera A, Rodríguez A (2002) Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today 76 2002(2–4):209–220Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59Malpass GRP, Miwa DW, Mortari DA, Machado SAS, Motheo AJ (2007) Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Res 41:2969–2977Manenti D, Soares P, Silva TCV, Módenes A, Espinoza-Quiñones F, Bergamasco R, Boaventura RR, Vilar VP (2015) Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater. Environ Sci Pollut Res 22:833–845Mondal M, De S (2016) Treatment of textile plant effluent by hollow fiber nanofiltration membrane and multi-component steady state modeling. Chem Eng J 285:304–318Montoneri, E., Boffa, V., Quagliotto, P., Mendichi, R., Chierotti, M. R., Gobetto, R., and Medana, C. (2008a) "Humic acid-like matter isolated from green urban wastes. Part 1: Structure and surfactant properties". Bio Res 3(1), 123–141.Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Prevot, A. B., Fabri, D. and Pramauro, E. (2008b) "Humic acid-like matter isolated from green urban wastes Part II: Performance in chemical and environmental technologies". Bio Res 3(1), 217–233.Montoneri E, Boffa V, Savarino P, Tambone F, Adani F, Micheletti L, Gianotti C, Chiono R (2009) Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation. Waste Manag 29:383–389Neamtu M, Yediler A, Siminiceanu I, Kettrup A (2003) Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. J Photochem Photobiol A 161:87–93Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166Pignatello J, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84Prato-Garcia D, Buitrón G (2011) Degradation of azo dye mixtures through sequential hybrid systems: evaluation of three advanced oxidation processes for the pre-treatment stage. J Photochem Photobiol A Chem 223:103–110Rodriguez M, Sarria V, Esplugas S, Pulgarin CP-F (2002) Treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution. J Photochem Photobiol A Chem 151:129–135Rosa JM, Fileti AMF, Tambourgi EB, Santana JCC (2015) Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by ultraviolet/hydrogen peroxide homogeneous photocatalysis. J Clean Prod 90:60–65Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater—a review. Appl Biochem Biotech 147(3):645–661Sarkar AK (2004) An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatol 4(1):15. doi: 10.1186/1471-5945-4-15Sharma KP, Sharma S et al (2007) A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. Chemosphere 69(1):48–54Standard methods for the examination of water and wastewater (2012) Part 2000: Physical & Aggregate properties, 22end edn. APHA, AWWA and WEFSutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015Wang C, Yediler A, Lienert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere 46(2):339–344Yoo J, Ahn B, Jeong-Ju O, Han T, Kim W-K, Kim S, Jung J (2013) Identification of toxicity variations in a stream affected by industrial effluents using Daphnia magna and Ulva pertusa. Original research article. J Hazard Mater 260:1042–104

    Variables evaluables en la aplicación de microcapsulas textiles

    Full text link
    [ES] En este trabajo se presenta un resumen de algunos estudios de las variables a considerar a la hora de aplicar productos microencapsulados sobre sustratos textiles. Se han estudiado variables en el procedimiento de aplicación, composición del baño, naturaleza de las fibras (carácter hidrófilo vs. hidrófobo), sección transversal de las mismas, estructura y gramaje del tejido. Someter a los sustratos textiles a ciclos de lavado sucesivos en húmedo y su posterior análisis mediante las técnicas instrumentales de microscopía electrónica de barrido (SEM) y contador de partículas ha permitido evaluar y optimizar estos parámetros.Los autores agradecen al Ministerio de Educaicón la concesión de una Beca del Programa de Formación del Profesorado Universitario (FPU-2008) a Lucía Capablanca. Y al Ministerio de Ciencia e Innovación por la financiación del Proyecto (Ref. PN MAT 2009-14210-C02-01).Capablanca, L.; Bonet-Aracil, M.; Monllor Pérez, P.; Díaz-García, P. (2011). Variables evaluables en la aplicación de microcapsulas textiles. Revista de Química Textil. 202:48-56. http://hdl.handle.net/10251/99362S485620
    corecore