1,083 research outputs found

    Disk Evolution in Young Binaries: from Observations to Theory

    Full text link
    The formation of a binary system surrounded by disks is the most common outcome of stellar formation. Hence studying and understanding the formation and the evolution of binary systems and associated disks is a cornerstone of star formation science. Moreover, since the components within binary systems are coeval and the sizes of their disks are fixed by the tidal truncation of their companion, binary systems provide an ideal "laboratory" in which to study disk evolution under well defined boundary conditions. In this paper, we review observations of several inner disk diagnostics in multiple systems, including hydrogen emission lines (indicative of ongoing accretion), Kβˆ’LK-L and Kβˆ’NK-N color excesses (evidence of warm inner disks), and polarization (indicative of the relative orientations of the disks around each component). We examine to what degree these properties are correlated within binary systems and how this degree of correlation depends on parameters such as separation and binary mass ratio. These findings will be interpreted both in terms of models that treat each disk as an isolated reservoir and those in which the disks are subject to re-supply from some form of circumbinary reservoir, the observational evidence for which we will also critically review. The planet forming potential of multiple star systems is discussed in terms of the relative lifetimes of disks around single stars, binary primaries and binary secondaries. Finally, we summarize several potentially revealing observational problems and future projects that could provide further insight into disk evolution in the coming decadeComment: 16 pages, 7 figures, chapter in Protostars and Planets

    The Taurus Boundary of Stellar/Substellar (TBOSS) Survey I: far-IR disk emission measured with Herschel

    Full text link
    With Herschel/PACS 134 low mass members of the Taurus star-forming region spanning the M4-L0 spectral type range and covering the transition from low mass stars to brown dwarfs were observed. Combining the new Herschel results with other programs, a total of 150 of the 154 M4-L0 Taurus members members have observations with Herschel. Among the 150 targets, 70um flux densities were measured for 7 of the 7 ClassI objects, 48 of the 67 ClassII members, and 3 of the 76 ClassIII targets. For the detected ClassII objects, the median 70um flux density level declines with spectral type, however, the distribution of excess relative to central object flux density does not change across the stellar/substellar boundary in the M4-L0 range. Connecting the 70um TBOSS values with the results from K0-M3 ClassII members results in the first comprehensive census of far-IR emission across the full mass spectrum of the stellar and substellar population of a star-forming region, and the median flux density declines with spectral type in a trend analogous to the flux density decline expected for the central objects. SEDs were constructed for all TBOSS targets covering the optical to far-IR range and extending to the submm/mm for a subset of sources. Based on an initial exploration of the impact of different physical parameters; inclination, scale height and flaring have the largest influence on the PACS flux densities. From the 24um to 70um spectral index of the SEDs, 5 new candidate transition disks were identified. The steep 24um to 70um slope for a subset of 8 TBOSS targets may be an indication of truncated disks in these systems.Two examples of mixed pair systems that include secondaries with disks were measured. Finally, comparing the TBOSS results with a Herschel study of Ophiuchus brown dwarfs reveals a lower fraction of disks around the Taurus substellar population.Comment: 64 pages, 33 figures, 12 tables, accepted for publication in A&

    Universal dissipation scaling for non-equilibrium turbulence

    Full text link
    It is experimentally shown that the non-classical high Reynolds number energy dissipation behaviour, Cϡ≑ϡL/u3=f(ReM)/ReLC_{\epsilon} \equiv \epsilon L/u^3 = f(Re_M)/Re_L, observed during the decay of fractal square grid-generated turbulence is also manifested in decaying turbulence originating from various regular grids. For sufficiently high values of the global Reynolds numbers ReMRe_M, f(ReM)∼ReMf(Re_M)\sim Re_M.Comment: 5 pages, 6 figure

    NICMOS Images of the GG Tau Circumbinary Disk

    Full text link
    We present deep, near-infrared images of the circumbinary disk surrounding the pre-main-sequence binary star, GG Tau A, obtained with NICMOS aboard the Hubble Space Telescope. The spatially resolved proto-planetary disk scatters roughly 1.5% of the stellar flux, with a near-to-far side flux ratio of ~1.4, independent of wavelength, and colors that are comparable to the central source; all of these properties are significantly different from the earlier ground-based observations. New Monte Carlo scattering simulations of the disk emphasize that the general properties of the disk, such as disk flux, near side to far side flux ratio and integrated colors, can be approximately reproduced using ISM-like dust grains, without the presence of either circumstellar disks or large dust grains, as had previously been suggested. A single parameter phase function is fitted to the observed azimuthal variation in disk flux, providing a lower limit on the median grain size of 0.23 micron. Our analysis, in comparison to previous simulations, shows that the major limitation to the study of grain growth in T Tauri disk systems through scattered light lies in the uncertain ISM dust grain properties. Finally, we use the 9 year baseline of astrometric measurements of the binary to solve the complete orbit, assuming that the binary is coplanar with the circumbinary ring. We find that the estimated 1 sigma range on disk inner edge to semi-major axis ratio, 3.2 < Rin/a < 6.7, is larger than that estimated by previous SPH simulations of binary-disk interactions.Comment: 40 pages, 8 postscript figures, accepted for publication in Ap

    On the tilting of protostellar disks by resonant tidal effects

    Get PDF
    We consider the dynamics of a protostellar disk surrounding a star in a circular-orbit binary system. Our aim is to determine whether, if the disk is initially tilted with respect to the plane of the binary orbit, the inclination of the system will increase or decrease with time. The problem is formulated in the binary frame in which the tidal potential of the companion star is static. We consider a steady, flat disk that is aligned with the binary plane and investigate its linear stability with respect to tilting or warping perturbations. The dynamics is controlled by the competing effects of the m=0 and m=2 azimuthal Fourier components of the tidal potential. In the presence of dissipation, the m=0 component causes alignment of the system, while the m=2 component has the opposite tendency. We find that disks that are sufficiently large, in particular those that extend to their tidal truncation radii, are generally stable and will therefore tend to alignment with the binary plane on a time-scale comparable to that found in previous studies. However, the effect of the m=2 component is enhanced in the vicinity of resonances where the outer radius of the disk is such that the natural frequency of a global bending mode of the disk is equal to twice the binary orbital frequency. Under such circumstances, the disk can be unstable to tilting and acquire a warped shape, even in the absence of dissipation. The outer radius corresponding to the primary resonance is always smaller than the tidal truncation radius. For disks smaller than the primary resonance, the m=2 component may be able to cause a very slow growth of inclination through the effect of a near resonance that occurs close to the disk center. We discuss these results in the light of recent observations of protostellar disks in binary systems.Comment: 21 pages, 7 figures, to be published in the Astrophysical Journa

    CO Line Emission and Absorption from the HL Tau Disk: Where is all the dust?

    Full text link
    We present high-resolution infrared spectra of HL Tau, a heavily embedded young star. The spectra exhibit broad emission lines of hot CO gas as well as narrow absorption lines of cold CO gas. The column density for this cooler material (7.5+/-0.2 x 10^18 cm-2) indicates a large column of absorbing gas along the line of sight. In dense interstellar clouds, this column density of CO gas is associated with Av~52 magnitudes. However, the extinction toward this source (Av~23) suggests that there is less dust along the line of sight than inferred from the CO absorption data. We discuss three possibilities for the apparent paucity of dust along the line of sight through the flared disk: 1) the dust extinction has been underestimated due to differences in circumstellar grain properties, such as grain agglomeration; 2) the effect of scattering has been underestimated and the actual extinction is much higher; or (3) the line of sight through the disk is probing a gas-rich, dust-depleted region, possibly due to the stratification of gas and dust in a pre-planetary disk.Comment: To be published in The Astrophysical Journa

    Improved estimation of Fokker-Planck equations through optimisation

    Full text link
    An improved method for the description of hierarchical complex systems by means of a Fokker-Planck equation is presented. In particular the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm for constraint problems (L-BFGS-B) is used to minimize the distance between the numerical solutions of the Fokker-Planck equation and the empirical probability density functions and thus to estimate properly the drift and diffusion term of the Fokker-Planck equation. The optimisation routine is applied to a time series of velocity measurements obtained from a turbulent helium gas jet in order to demonstrate the benefits and to quantify the improvements of this new optimisation routine

    Noncommutative Metafluid Dynamics

    Full text link
    In this paper we define a noncommutative (NC) Metafluid Dynamics \cite{Marmanis}. We applied the Dirac's quantization to the Metafluid Dynamics on NC spaces. First class constraints were found which are the same obtained in \cite{BJP}. The gauge covariant quantization of the non-linear equations of fields on noncommutative spaces were studied. We have found the extended Hamiltonian which leads to equations of motion in the gauge covariant form. In addition, we show that a particular transformation \cite{Djemai} on the usual classical phase space (CPS) leads to the same results as of the ⋆\star-deformation with Ξ½=0\nu=0. Besides, we will shown that an additional term is introduced into the dissipative force due the NC geometry. This is an interesting feature due to the NC nature induced into model.Comment: 11 page

    Destruction of a metastable string by particle collisions

    Full text link
    We calculate the probability of destruction of a metastable string by collisions of the Goldstone bosons, corresponding to the transverse waves on the string. We find a general formula that allows to determine the probability of the string breakup by a collision of arbitrary number of the bosons. We find that the destruction of a metastable string takes place only in collisions of even number of the bosons, and we explicitly calculate the energy dependence of such process in a two-particle collision for an arbitrary relation between the energy and the largest infrared scale in the problem, the length of the critical gap in the string.Comment: 15 pages, 1 figur

    C2D Spitzer-IRS spectra of disks around T Tauri stars: IV. Crystalline silicates

    Get PDF
    Aims. Dust grains in the planet-forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation, and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks for a statistically significant number of TTauri stars (96). Methods. As part of the cores to disks (c2d) legacy program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars, over a spectral range of 5-35 ΞΌm where many silicate amorphous and crystalline solid-state features are present. At these wavelengths, observations probe the upper layers of accretion disks up to distances of a dozen AU from the central object. Results. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. The Fe-rich crystalline silicates are largely absent in the c2d IRS spectra. The strength and detection frequency of the crystalline features seen at Ξ» > 20 ΞΌm correlate with each other, while they are largely uncorrelated with the observational properties of the amorphous silicate 10 ΞΌm feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (≀1 AU) emitting at ~ 10 ΞΌm and a much colder region emitting at Ξ» > 20 ΞΌm (≀10 AU). We identify a crystallinity paradox, as the long-wavelength (Ξ» > 20 m) crystalline silicate features are detected 3.5 times more frequently (~55% vs. ~15%) than the crystalline features arising from much warmer disk regions (Ξ» ~ 10 ΞΌm). This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The analysis of the shape and strength of both the amorphous 10 ΞΌm feature and the crystalline feature around 23 ΞΌm provides evidence for the prevalence of ΞΌm-sized (amorphous and crystalline) grains in upper layers of disks. Conclusions. The abundant crystalline silicates found far from their presumed formation regions suggest efficient outward radial transport mechanisms in the disks around TTauri stars. The presence of ΞΌm-sized grains in disk atmospheres, despite the short timescales for settling to the midplane, suggests efficient (turbulent) vertical diffusion, probably accompanied by grain-grain fragmentation to balance the expected efficient growth. In this scenario, the depletion of submicron-sized grains in the upper layers of the disks points toward removal mechanisms such as stellar winds or radiation pressure
    • …
    corecore