8 research outputs found
Effect of Streptococcus uberis on Gamma Delta T Cell Phenotype in Bovine Mammary Gland
In this study, we focused analyzing γδ T cells during bovine mammary gland inflammation induced by Streptococcus uberis. A mammary gland cell suspension was obtained using lavage 24, 48, 72, and 168 h after intramammary-induced infection. The proportion of lymphocytes increased during the entire week in which inflammation was present. The γδ T cells were also elevated during inflammation, reaching their peak at 72 h following induced inflammation. The percentage of apoptotic lymphocytes continually increased, with the highest proportion occurring 168 h after S. uberis infection. The results show that γδ T cells may be involved in the resolution of inflammation in bovine mammary glands, with the apoptosis of those cells potentially playing an important role.O
TRPM6 N-Terminal CaM- and S100A1-Binding Domains
Transient receptor potential (TRPs) channels are crucial downstream targets of calcium signalling cascades. They can be modulated either by calcium itself and/or by calcium-binding proteins (CBPs). Intracellular messengers usually interact with binding domains present at the most variable TRP regions—N- and C-cytoplasmic termini. Calmodulin (CaM) is a calcium-dependent cytosolic protein serving as a modulator of most transmembrane receptors. Although CaM-binding domains are widespread within intracellular parts of TRPs, no such binding domain has been characterised at the TRP melastatin member—the transient receptor potential melastatin 6 (TRPM6) channel. Another CBP, the S100 calcium-binding protein A1 (S100A1), is also known for its modulatory activities towards receptors. S100A1 commonly shares a CaM-binding domain. Here, we present the first identified CaM and S100A1 binding sites at the N-terminal of TRPM6. We have confirmed the L520-R535 N-terminal TRPM6 domain as a shared binding site for CaM and S100A1 using biophysical and molecular modelling methods. A specific domain of basic amino acid residues (R526/R531/K532/R535) present at this TRPM6 domain has been identified as crucial to maintain non-covalent interactions with the ligands. Our data unambiguously confirm that CaM and S100A1 share the same binding domain at the TRPM6 N-terminus although the ligand-binding mechanism is different
Multilocus Sequence Genotype Heterogeneity in Streptococcus uberis Isolated from Bovine Mastitis in the Czech Republic
The ubiquitous occurrence and high heterogeneity of Streptococcus uberis strains cause difficulties in the development and implementation of effective control strategies in dairy herds. In this study, S. uberis strains from 74 farms, obtained predominantly from subclinical, acute, and chronic recurrent mastitis, as well as from udder surface swabs and milk from healthy udders, were analysed for their genetic diversity using multilocus sequence typing (MLST). Isolates were tested for the presence of the genes encoding the virulence factors using polymerase chain reaction. Antibiotic susceptibility testing was performed using a microdilution assay including 14 antimicrobials. The virulence profiles and antimicrobial (AMR) profiles of the isolates were assembled and the overall heterogeneity was evaluated. Among the 124 isolates, 89 MLST genotypes, 7 different virulence profiles, and 12 AMR profiles were identified. The large number of different MLST allelic profiles in this study points to the high heterogeneity of strains in dairy herds in the Czech Republic. Isolates of a certain MLST genotype may possess a different set of virulence factor genes. We detected up to three different resistance profiles within a single MLST genotype. The results of our study showed that fully susceptible isolates coexisted with resistant or even multiresistant isolates in the same herd. Multiple genotypes within a herd were detected on many farms (up to seven MLST genotypes and four AMR profiles in one herd). This heterogenic population structure might suggest that environmental transmission is the predominant route of infection in herds in the Czech Republic
Resistance of <i>Streptococcus suis</i> Isolates from the Czech Republic during 2018–2022
A determination of susceptibility/resistance to antimicrobials via serotype was carried out in 506 field isolates of Streptococcus suis, originating from pig farms in the Czech Republic in the period 2018–2022. A very high level of susceptibility of S. suis isolates was found to amoxicillin, in combination with clavulanic acid and sulfamethoxazole potentiated with trimethoprim. None of the tested isolates were resistant to these antimicrobial substances. Only two isolates were found to be intermediately resistant to enrofloxacin in 2020. With regard to ceftiofur, one isolate was intermediately resistant in 2020 and 2022, and two isolates were intermediately resistant in 2018 and 2021. A low level of resistance was detected to ampicillin (0.6% in 2021) and to florfenicol (1.15% in 2019; 1.3% in 2022). With regard to penicillin, a medium level of resistance was detected in 2018 (10.6%), but a low level of resistance was found in the following years (7.0% in 2019; 3.1% in 2020; 3.3% in 2021; 3.9% in 2022). On the contrary, a high or very high level of resistance was found to tetracycline (66.0% in 2018; 65.1% in 2019; 44.35% in 2020; 46.4% in 2021; 54.0% in 2022). Using molecular and serological methods, serotype 7 (16.4%) was determined to be predominant among S. suis isolates, followed by serotypes 1/2, 2, 9, 4, 3, 1, 29, 16, and 31 (10.7%; 8.5%; 5.7%; 5.5%; 4.5%; 4.3%; 3.6%; 3.4%; 3.4%, respectively). Other serotypes were identified among the investigated strains either rarely (up to 10 cases) or not at all. A relatively high percentage of isolates were detected as non-typeable (79 isolates; 15.6%). Dependence of resistance upon serotype assignment could not be proven in all but serotype 31, wherein all isolates (n = 17) were resistant or intermediately resistant to clindamycin, tilmycosin, tulathromycin, and tetracycline. The resistance to clindamycin and tetracycline may be related to the high consumption of these antibiotics on pig farms at present or in previous years. Macrolides (tilmicosin and tulathromycin) and tiamulin are not suitable for the treatment of streptococcal infections, but are used on pig farms to treat respiratory infections caused by gram-negative bacteria, so they were included in the study
Characterization of AMBN I and II isoforms and study of their Ca2+ binding properties
Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel—the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN—its oligomerization ability—is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes
Vaccine against Streptococcus suis Infection in Pig Based on Alternative Carrier Protein Conjugate
Streptococcus suis is a serious pathogen in the pig industry with zoonotic potential. With respect to the current effort to reduce antibiotic use in animals, a prophylactic measure is needed to control the disease burden. Unfortunately, immunization against streptococcal pathogens is challenging due to nature of the interaction between the pathogen and the host immune system, but vaccines based on conjugates of capsular polysaccharide (CPS) and carrier protein were proved to be efficient. The main obstacle of these vaccines is manufacturing cost, limiting their use in animals. In this work, we tested an experimental vaccine against Streptococcus suis serotype 2 based on capsular polysaccharide conjugated to chicken ovalbumin (OVA) and compared its immunogenicity and protectivity with a vaccine based on CRM197 conjugate. Ovalbumin was selected as a cheap alternative to recombinant carrier proteins widely used in vaccines for human use. We found that the ovalbumin-based experimental vaccine successfully induced immune response in pigs, and the IgG antibody response was even higher than after immunization with capsular polysaccharide-CRM197 conjugate. Protectivity of vaccination against infection was evaluated in the challenge experiment and was found promising for both conjugates