13 research outputs found

    Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    Get PDF
    The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+), Klebsiella pneumoniae (ESBL+), Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts), which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives

    In Vitro Antiproliferative and Antioxidant Effects of Extracts from Rubus caesius

    Get PDF
    The present study was performed to evaluate the effect of different extracts and subfractions from Rubus caesius leaves on two human colon cancer cell lines obtained from two stages of the disease progression lines HT29 and SW948. Tested samples inhibited the viability of cells, both HT29 and SW948 lines, in a concentration-dependent manner. The most active was the ethyl acetate fraction which, applied at the highest concentration (250 μg/mL), decreased the viability of cells (HT29 and SW948) below 66%. The extracts and subfractions were also investigated for antioxidant activities on DPPH and FRAP assays. All extracts, with the exception of water extract at a dose of 250 μg/mL, almost totally reduced DPPH. The highest Fe3+ ion reduction was shown for the diethyl and ethyl acetate fractions. It was more than 6.5 times higher (at a dose 250 μg/mL) as compared to the control. The LC-MS studies of the analysed preparations showed that all samples contain a wide variety of polyphenolics, among which ellagitannins turned out to be the main constituents with dominant ellagic acid, sanguiin H-6, and flavonol derivatives

    Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications

    No full text
    This review is focused on current state-of-the-art research on electroactive-based materials and their synthesis, as well as their physicochemical and biological properties. Special attention is paid to pristine intrinsically conducting polymers (ICPs) and their composites with other organic and inorganic components, well-defined micro- and nanostructures, and enhanced surface areas compared with those of conventionally prepared ICPs. Hydrogels, due to their defined porous structures and being filled with aqueous solution, offer the ability to increase the amount of immobilized chemical, biological or biochemical molecules. When other components are incorporated into ICPs, the materials form composites; in this particular case, they form conductive composites. The design and synthesis of conductive composites result in the inheritance of the advantages of each component and offer new features because of the synergistic effects between the components. The resulting structures of ICPs, conducting polymer hydrogels and their composites, as well as the unusual physicochemical properties, biocompatibility and multi-functionality of these materials, facilitate their bioapplications. The synergistic effects between constituents have made these materials particularly attractive as sensing elements for biological agents, and they also enable the immobilization of bioreceptors such as enzymes, antigen-antibodies, and nucleic acids onto their surfaces for the detection of an array of biological agents. Currently, these materials have unlimited applicability in biomedicine. In this review, we have limited discussion to three areas in which it seems that the use of ICPs and materials, including their different forms, are particularly interesting, namely, biosensors, delivery of drugs and tissue engineering

    A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids

    No full text
    Omega-3 fatty acids, one of the key building blocks of cell membranes, have been of particular interest to scientists for many years. However, only a small group of the most important omega-3 polyunsaturated fatty acids are considered. This full-length review presents a broad and relatively complete cross-section of knowledge about omega-3 monounsaturated fatty acids, polyunsaturates, and an outline of their modifications. This is important because all these subgroups undoubtedly play an important role in the function of organisms. Some monounsaturated omega-3s are pheromone precursors in insects. Polyunsaturates with a very long chain are commonly found in the central nervous system and mammalian testes, in sponge organisms, and are also immunomodulating agents. Numerous modifications of omega-3 acids are plant hormones. Their chemical structure, chemical binding (in triacylglycerols, phospholipids, and ethyl esters) and bioavailability have been widely discussed indicating a correlation between the last two. Particular attention is paid to the effective methods of supplementation, and a detailed list of sources of omega-3 acids is presented, with meticulous reference to the generally available food. Both the oral and parenteral routes of administration are taken into account, and the omega-3 transport through the blood-brain barrier is mentioned. Having different eating habits in mind, the interactions between food fatty acids intake are discussed. Omega-3 acids are very susceptible to oxidation, and storage conditions often lead to a dramatic increase in this exposure. Therefore, the effect of oxidation on their bioavailability is briefly outlined

    Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery

    No full text
    This review is an extensive evaluation and essential analysis of the design and formation of hydrogels (HGs) for drug delivery. We review the fundamental principles of HGs (their chemical structures, physicochemical properties, synthesis routes, different types, etc.) that influence their biological properties and medical and pharmaceutical applications. Strategies for fabricating HGs with different diameters (macro, micro, and nano) are also presented. The size of biocompatible HG materials determines their potential uses in medicine as drug carriers. Additionally, novel drug delivery methods for enhancing treatment are discussed. A critical review is performed based on the latest literature reports

    Evaluation of the Covalent Functionalization of Carbon Nano-Onions with Pyrene Moieties for Supercapacitor Applications

    No full text
    Herein, we report the surface functionalization of carbon nano-onions (CNOs) through an amidation reaction that occurs between the oxidized CNOs and 4-(pyren-4-yl)butanehydrazide. Raman and Fourier transform infrared spectroscopy methods were used to confirm the covalent functionalization. The percentage or number of groups in the outer shell was estimated with thermal gravimetric analysis. Finally, the potential applications of the functionalized CNOs as electrode materials in supercapacitors were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. Functionalization increased the specific capacitance by approximately 138% in comparison to that of the pristine CNOs, while acid-mediated oxidation reduced the specific capacitance of the nanomaterial by 24%

    Ragged Robin (Lychnis flos-cuculi) - a plant with potential medicinal value

    Get PDF
    Lychnis flos-cuculi L., Caryophyllaceae, contains a number of active compounds belonging to several chemical groups. Previous studies have led to the identification of phytoecdysteroids, triterpenoids saponins, volatile compounds, fatty acid derivatives, phenolic acids and flavonoids. Research on pharmacological activity showed that plant extracts inhibited the growth of bacteria and fungi. The antimitotic properties of preparations from the herb L. flos-cuculiwere also reported. The phytochemical analyses demonstrated that this taxon contains pharmaceutically promising compounds, but more phytochemical and pharmacological studies of L. flos-cuculi are needed for further information regarding this plant. This review summarizes reports regarding chemical composition and biological activity of L. flos-cuculi as well as several cognate species, which pose opportunities related to in vitro propagation and cell and tissue cultures. In vitro-regenerated plantlets could be a good source of genetically uniform plant material for future research

    Glycerol and Natural Deep Eutectic Solvents Extraction for Preparation of Luteolin-Rich <i>Jasione montana</i> Extracts with Cosmeceutical Activity

    No full text
    Jasione montana is a plant from the family Campanulaceae rich in phenols with health-beneficial properties such as luteolin (LUT) derivatives. In this work, a glycerol-based ultrasound-assisted extraction method was developed and optimized for in total phenol (TP) and LUT content, as well as antiradical activity (RSA). The best conditions (glycerol content, temperature, plant material weight, and ultrasonication power) for the preparation of J. montana extracts richest in TP (OPT-TP), LUT (OPT-LUT), and having the best RSA (OPT-RSA) were determined. Furthermore, numerous natural deep eutectic solvents (NADES), containing proline, glycerol, betaine, urea, and glucose were prepared and used for the extraction of J. montana. Contents of TP, LUT, and RSA in the prepared extracts were established. Antioxidant and cosmeceutical activity of the prepared extracts was tested. The OPT-TP, OPT-LUT, and OPT-RSA, as well as the most efficient NADES-based extract, PG-50-TP, were excellent antioxidants and Fe2+ ion chelators. In addition, they were potent inhibitors of collagenase and hyaluronidase, as well as good significant anti-elastase and -lipoxygenase activity. The observed antioxidant- and enzyme-inhibiting activity of J. montana extracts prepared using environmentally friendly methods and non-toxic solvents makes them promising ingredients of cosmeceutical products

    Novel Gel Formulations as Topical Carriers for the Essential Oil of Bidens tripartita for the Treatment of Candidiasis

    No full text
    The genus Bidens L. (Asteraceae) refers to several species of plants used in traditional phytotherapeutic preparations. B. tripartita, also known as bur marigold, is the most familiar plant and has been known as a remedy for chronic dysentery. The hydrodistilled essential oil of the aerial parts of the Polish B. tripartita was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. To exclude any potential toxic effects of the oil on human dermal fibroblasts, the MTT test (methyl thiazolyl tetrazolium) and COMET assay (single-cell gel electrophoresis) were performed. Novel gel formulations as topical carriers for essential oil obtained from B. tripartita were developed and characterized. The bioadhesive properties of the designed preparations in the ex vivo model using the skin of hairless mice were also evaluated. The therapeutic efficacy of the topical formulations is influenced by active phytoconstituents and vehicle characteristics. The antifungal properties of the essential oil of B. tripartita were also tested against Candida species, and this oil appears to be a promising topical anticandidal agent
    corecore