23 research outputs found

    Impact of antibiotics on the proliferation and differentiation of human adipose-derived mesenchymal stem cells

    Get PDF
    Adipose tissue is a promising source of mesenchymal stem cells. Their potential to differentiate and regenerate other types of tissues may be affected by several factors. This may be due to in vitro cell-culture conditions, especially the supplementation with antibiotics. The aim of our study was to evaluate the effects of a penicillin-streptomycin mixture (PS), amphotericin B (AmB), a complex of AmB with copper (II) ions (AmB-Cu2+) and various combinations of these antibiotics on the proliferation and differentiation of adipose-derived stem cells in vitro. Normal human adipose-derived stem cells (ADSC, Lonza) were routinely maintained in a Dulbecco’s Modified Eagle Medium (DMEM) that was either supplemented with selected antibiotics or without antibiotics. The ADSC that were used for the experiment were at the second passage. The effect of antibiotics on proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine-B (SRB) tests. Differentiation was evaluated based on Alizarin Red staining, Oil Red O staining and determination of the expression of ADSC, osteoblast and adipocyte markers by real-time RT-qPCR. The obtained results indicate that the influence of antibiotics on adipose-derived stem cells depends on the duration of exposure and on the combination of applied compounds. We show that antibiotics alter the proliferation of cells and also promote natural osteogenesis, and adipogenesis, and that this effect is also noticeable in stimulated osteogenesis

    Expression of genes KCNQ1 and HERG encoding potassium ion channels Ikr, Iks in long QT syndrome

    Get PDF
    Background: The KCNQ1 and HERG genes mutations are responsible for specific types of congenital long QT syndrome (LQT). Aim: To examine the expression of KCNQ1 and HERG genes that encode potassium channels (rapid and slow) responsible for the occurrence of particular types of LQT syndrome. The study also attempted to prove that beta-actin is a good endogenous control when determining the expression of the studied genes. Methods: The study enrolled six families whose members suffered from either LQT1 or LQT2, or were healthy. Examination of gene expression was achieved with quantitative PCR (QRT-PCR). Expression of the investigated genes was inferred from the analysis of the number of mRNA copies per 1 mg total RNA isolated from whole blood. On the basis of KCNQ1 gene expression profile, the presence of, or absence of, LQT1 could be confirmed. Results and conclusions: The study revealed a statistically significant difference (p = 0.031) between the number of KCNQ1 gene copies in patients and healthy controls. On the basis of HERG (KCNH2) gene expression profile, patients with LQT2 cannot be unequivocally differentiated from healthy subjects (p = 0.37). Kardiol Pol 2011; 69, 5: 423–429Wstęp i cel: Głównym celem pracy było zbadanie ekspresji genów HERG i KCNQ1, kodujących kanały potasowe (szybkie i wolne), odpowiadających za wystąpienie określonego rodzaju zespołu długiego QT (LQTS). Metody: Do badania włączono 6 rodzin, u członków których zdiagnozowano LQTS1 lub LQTS2, lub zdrowych. Badanie miało na celu udowodnienie, że beta-aktyna stanowi dobrą kontrolę endogenną przy ustalaniu ekspresji badanych genów. Do badania ekspresji genów wykorzystano ilościową analizę PCR w czasie rzeczywistym (QRT-PCR). Ekspresję badanych genów przedstawiono jako liczbę kopii mRNA w przeliczeniu na 1 mg całkowitego RNA izolowanego z krwi pełnej. Dane zostały wyeksportowane z arkusza Excel do programu analizy danych Statistica V.7.1. Wyniki i wnioski: Na podstawie profilu ekspresji genu KCNQ1 można potwierdzić występowanie zespołu LQTS1. Badania wykazały statystycznie istotną różnicę (p = 0,031) między liczbą KCNQ1 kopii genu u osób chorych i zdrowych. Na podstawie profilu ekspresji genu HERG (KCNH2) chorych z LQTS2 nie można jednoznacznie odróżnić od osób zdrowych (p = 0,37). Kardiol Pol 2011; 69, 5: 423–42

    Interleukin-1beta Promoter (−31T/C and −511C/T) Polymorphisms in Major Recurrent Depression

    Get PDF
    To elucidate a genetic predisposition to major depressive disorder, we investigated two polymorphisms (−31T/C and −511C/T) in the interleukin-1beta promoter region in patients who suffered from major recurrent depression. The aim of the current work was to compare alleles and genotype layout between patients with major recurrent depression and healthy people. We would like to indicate such combination of genotypes which corresponds with major recurrent depression. Correlations between genotypes for analyzed polymorphisms and number of episodes, number of points in Hamilton Depression Rating Scale, and age of onset were investigated as well. The study group consisted of 94 patients diagnosed with major recurrent depression. The control group included 206 healthy individuals. Both groups involved representatives of Caucasian population. Genotyping of polymorphisms was performed by using PCR-RFLP technique. A specific haplotype, composed of the C allele at −31 and the T allele at −511, has a tendency to have a statistically significant difference (p = 0.064) between patients and control group. Correspondence analysis revealed that genotype T/T at −31 and genotype C/C at −511 are associated with major recurrent depression. No association was found between genotypes for studied polymorphic sites and number of episodes, number of points in Hamilton Depression Rating Scale, and age of onset

    Analiza zależności pomiędzy aktywnością transkrypcyjną estrogenozależnych genów cytochromu P450 a profilem receptorów estrogenowych w gruczolakoraku endometrium

    No full text
    INTRODUCTION: Studies show that the development of endometrial cancer is associated with the activity of estrogen-dependent genes, whose action is conditioned by the presence of estrogen receptors (ER). Analysis of the transcriptional activity of the genes which code ERs as well as the concentration profile of their isoforms could help to understand the mechanism of estrogen activity on the risk of endometrial cancer occurrence, as well as the mechanisms involved in its development and spread. The aim of the conducted studies was to compare the transcriptional activity of the genes coding ER-alpha and ER-beta estrogen receptors, determine the types of post-transcription modifications of ER mRNA in endometrial adenocarcinoma and normal endometrium as well as determine the transcriptome of estrogen-dependent genes of cytochrome P450. MATERIAL AND METHODS: Extraction of the total RNA from 47 endometrium samples was performed with the TRIzol reagent (Invitrogen). The expression profile of the estrogen-dependent genes of cytochrome P450 was determined using the HG-U133A (Affymetrix) oligonucleotide microarray technique from among 22,283 IDs of mRNA IDs. The QRT-PCR reaction for quantification of the mRNA of estrogen receptors was performed using an ABI PRISMTM 7700 (TaqMan) sequence detector. For the QRT-PCR reaction, oligonucleotide starter sequences to detect the ER-alpha and ER-beta mRNA isoforms were designed using Primer ExpressTM Version 1.0 software. RESULTS: In the presented work, it was found that estrogen receptor gene expression occurs in normal endometrium as well as in endometrial adenocarcinoma, and the dominating type is ER-alpha. The transcriptional activity of the ER-alpha and ER-beta genes decreases in adenocarcinoma with a simultaneous increase in the transcriptional activity ratio. The ER-alpha/delta5 isoform dominates in endometrial cancer. Statistical analysis conducted in the GeneSpring 11.5 programme showed that from the group of 91 mRNA IDs of the genes of cytochrome P450, 5 mRNA IDs differentiate, for p 1.5. In the presented work, it was found that the expression of estrogen receptor genes occurs in normal endometrium and endometrial adenocarcinoma, and the dominant type is ER-alpha. The transcriptional activity of the ER-alpha and ER-beta genes decreases in adenocarcinoma, while the transcriptional activity index increases. In endometrial cancer, the ER-alpha/delta5 isoform dominates. Statistical analysis conducted in GeneSpring 11.5 showed that from the group 91 ID mRNA of cytochrome P450 genes, 5 ID mRNA is differentiating, for p 1.5. CONCLUSIONS: The presence of such a transcriptional profile of the studied genes in endometrial adenocarcinoma may indicate that post-transcriptional modifications of estrogen receptors are associated with changes triggering carcinogenesis.WSTĘP: Badania wskazują, że wzrost raka endometrium ma związek z aktywnością genów estrogenozależnych, których działanie jest uwarunkowane obecnością receptorów estrogenowych (ER). Analiza aktywności transkrypcyjnej genów kodujących ERs oraz profilu stężeń ich izoform mogłaby pomóc w zrozumieniu mechanizmów wpływu estrogenów na ryzyko wystąpienia raka endometrium, a także mechanizmów zaangażowanych w jego rozwój i rozprzestrzenianie. Celem prowadzonych badań było porównanie aktywności transkrypcyjnej genów kodujących receptory estrogenowe ER-alfa i ER-beta, wyznaczenie typów modyfikacji potranskrypcyjnych mRNA ERs w gruczolakoraku endometrium i endometrium prawidłowym oraz wyznaczenie transkryptomu estrogenozależnych genów cytochromu P450. MATERIAŁ I METODY: Ekstrakcję całkowitego RNA z 47 próbek endometrium przeprowadzono przy użyciu odczyn-nika TRIzol (Invitrogen). Techniką mikromacierzy oligonukleotydowych HG-U133A (Affymetrix) spośród 22 283 ID mRNA wyznaczono profil ekspresji estrogenozależnych genów cytochromu P450. Reakcję QRT-PCR w celu oznaczenia ilościowego mRNA receptorów estrogenowych wykonano z zastosowaniem detektora sekwencji ABI PRISMTM 7700 (TaqMan). Do reakcji QRT-PCR zaprojektowano sekwencje oligonukleotydowych starterów do detekcji izoform mRNA ER-alfa i ER-beta, wykorzystując program komputerowy Primer ExpressTM Version 1.0. WYNIKI: W przedstawionej pracy stwierdzono, że ekspresja genów receptorów estrogenowych występuje w endometrium prawidłowym oraz gruczolakoraku endometrium, a dominującym typem jest ER-alfa. Aktywność transkrypcyjna genów ER-alfa i ER-beta zmniejsza się w gruczolakoraku, przy równoczesnym wzroście wskaźnika aktywności transkrypcyjnej. W raku endometrium dominuje izoforma ER-alfa/delta5. Analiza statystyczna przeprowadzona w programie GeneSpring 11.5 wykazała, że z grupy 91 ID mRNA genów cytochromu P450 różnicujących jest 5 ID mRNA, dla p 1,5. WNIOSKI:Obecność takiego profilu transkrypcyjnego badanych genów w gruczolakoraku endometrium może wskazywać na związek modyfikacji potranskrypcyjnych receptorów estrogenowych ze zmianami uruchamiającymi karcinogenezę

    Dermatan Sulfate Affects Breast Cancer Cell Function via the Induction of Necroptosis

    No full text
    Dermatan sulfate (DS) is widespread in the extracellular matrix (ECM) of animal tissues. This glycosaminoglycan is characterized by a variable structure, which is reflected in the heterogeneity of its sulfation pattern. The sulfate groups are responsible for the binding properties of DS, which determine an interaction profile of this glycan. However, the detailed role of DS in biological processes such as the neoplasm is still poorly understood. The aim of the study was to assess the effects of the structural variants of DS on breast cancer cells. We found that DS isoforms from normal and fibrotic fascia as well as from intestinal mucosa were able to quickly induce oxidative stress in the cytoplasm and affect the mitochondrial function in luminal breast cancer cells. Moreover, the variants caused the necroptosis of the cells most likely via the first of these mechanisms. This death was responsible for a reduction in the viability and number of breast cancer cells. However, the dynamics and intensity of all of the DS variants-triggered effects were strongly dependent on the cell type and the structure of these molecules. The most pronounced activity was demonstrated by those variants that shared structural features with the DS from the tumor niche

    Synergistic Effect of the Long-Term Overexpression of Bcl-2 and BDNF Lentiviral in Cell Protecting against Death and Generating TH Positive and CHAT Positive Cells from MSC

    No full text
    Mesenchymal stem cells (MSC) are potentially a good material for transplantation in many diseases, including neurodegenerative diseases. The main problem with using them is the low percentage of surviving cells after the transplant procedure and the naturally poor ability of MSC to spontaneously differentiate into certain types of cells, which results in their poor integration with the host cells. The aim and the novelty of this work consists in the synergistic overexpression of two genes, BCL2 and BDNF, using lentiviral vectors. According to our hypothesis, the overexpression of the BCL2 gene is aimed at increasing the resistance of cells to stressors and toxic factors. In turn, the overexpression of the BDNF gene is suspected to direct the MSC into the neural differentiation pathway. As a result, it was shown that the overexpression of both genes and the overproduction of proteins is permanent and persists for at least 60 days. The synergistically transduced MSC were significantly more resistant to the action of staurosporine; 12 days after transduction, the synergistically transduced MSC had a six-times greater survival rate. The overexpression of the Bcl-2 and BDNF proteins was sufficient to stimulate a significant overexpression of the CHAT gene, and under specific conditions, the TH, TPH1, and SYP genes were also overexpressed. Modified MSC are able to differentiate into cholinergic and dopaminergic neurons, and the release of acetylcholine and dopamine may indicate their functionality

    Inositol Hexaphosphate Inhibits Proliferation and Induces Apoptosis of Colon Cancer Cells by Suppressing the AKT/mTOR Signaling Pathway

    No full text
    Abstract: AKT, a serine/threonine protein kinase and mammalian target of rapamycin (mTOR) plays a critical role in the proliferation and resistance to apoptosis that are essential to the development and progression of colon cancer. Therefore, AKT/mTOR signaling pathway has been recognized as an attractive target for anticancer therapy. Inositol hexaphosphate (InsP6), a natural occurring phytochemical, has been shown to have both preventive and therapeutic effects against various cancers, however, its exact molecular mechanisms of action are not fully understood. The aim of the in vitro study was to investigate the anticancer activity of InsP6 on colon cancer with the focus on inhibiting the AKT1 kinase and p70S6K1 as mTOR effector, in relation to proliferation and apoptosis of cells. The colon cancer Caco-2 cells were cultured using standard techniques and exposed to InsP6 at different concentrations (1 mM, 2.5 mM and 5 mM). Cellular proliferative activity was monitored by 5-bromo-2′-deoxyuridine (BrdU) incorporation into cellular DNA. Flow cytometric analysis was performed for cell cycle progression and apoptosis studies. Real-time RT-qPCR was used to validate mRNA levels of CDNK1A, CDNK1B, CASP3, CASP9, AKT1 and S6K1 genes. The concentration of p21 protein as well as the activities of caspase 3, AKT1 and p70S6K1 were determined by the ELISA method. The results revealed that IP6 inhibited proliferation and stimulated apoptosis of colon cancer cells. This effect was mediated by an increase in the expression of genes encoding p21, p27, caspase 3, caspase 9 as well a decrease in transcription of AKT1 and S6K1. InsP6 suppressed phosphorylation of AKT1 and p70S6K1, downstream effector of mTOR. Based on these studies it may be concluded that InsP6 can reduce proliferation and induce apoptosis through inhibition of the AKT/mTOR pathway and mTOR effector followed by modulation of the expression and activity of several key components of these pathways in colon cancer cells
    corecore