11 research outputs found

    Disorders in the CMG helicase complex increase the proliferative capacity and delay chronological aging of budding yeast

    Get PDF
    The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment

    Depletion of the Origin Recognition Complex Subunits Delays Aging in Budding Yeast

    Get PDF
    Precise DNA replication is pivotal for ensuring the accurate inheritance of genetic information. To avoid genetic instability, each DNA fragment needs to be amplified only once per cell cycle. DNA replication in eukaryotes starts with the binding of the origin recognition complex (ORC) to the origins of DNA replication. The genes encoding ORC subunits have been conserved across eukaryotic evolution and are essential for the initiation of DNA replication. In this study, we conducted an extensive physiological and aging-dependent analysis of heterozygous cells lacking one copy of ORC genes in the BY4743 background. Cells with only one copy of the ORC genes showed a significant decrease in the level of ORC mRNA, a delay in the G1 phase of the cell cycle, and an extended doubling time. Here, we also show that the reducing the levels of Orc1-6 proteins significantly extends both the budding and average chronological lifespans. Heterozygous ORC/orcΔ and wild-type diploid cells easily undergo haploidization during chronological aging. This ploidy shift might be related to nutrient starvation or the inability to survive under stress conditions. A Raman spectroscopy analysis helped us to strengthen the hypothesis of the importance of lipid metabolism and homeostasis in aging

    Insight into Details of the Photosynthetic Light Reactions and Selected Metabolic Changes in Tomato Seedlings Growing under Various Light Spectra

    No full text
    The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 μmol m−2 s−1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and β-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed

    The Biometric Parameters of Microgreen Crops Grown under Various Light Conditions

    No full text
    Microgreens are becoming increasingly popular both as horticultural crops and as vegetables consumed by humans. They are classified as foods of high nutritional value. Twenty-eight microgreens crops were grown in a growth chamber under fully controlled conditions in order to determine how different light treatments affected their growth rate. The plants were grown under three light sources emitting red/blue ratios of about 6.7, 0.6, and 1.6 units (Red light, Blue light, and R + B light, respectively). Apart from that, the spectrum contained 10% yellow and orange light and 10% green light. The fresh weight of the plants ranged from 8 (perilla) to 1052 mg (nasturtium), whereas the length ranged for the same plants from 2.0 to 26.2 cm. The nasturtium was particularly strongly distinguished from the other species by the high values of its biometric parameters. The fresh mass of most of the other microgreens ranged from 20 to 100 mg, whereas their height ranged from 5 to 8 cm. Red light caused a significant increase in the fresh and dry weights of more than half of the species. The light spectrum had a lesser influence on the length of the plants. The research results showed considerable differences in the dynamics of growth of commonly cultivated microgreens

    The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Gloeobacter violaceus

    No full text
    Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed

    Enzymatic Defense Response of Apple Aphid Aphis pomi to Increased Temperature

    No full text
    Climate change, and in particular the increase in temperature we are currently observing, can affect herbivorous insects. Aphids, as poikilothermic organisms, are directly exposed to temperature increases that influence their metabolism. Heat stress causes disturbances between the generations and the neutralization of reactive oxygen species (ROS). The aim of this work is focused on explaining how the aphid, using the example of Aphis pomi, responds to abiotic stress caused by temperature increase. The experiment was carried out under controlled conditions at three temperatures: 20, 25, and 28 °C. In the first stage, changes in the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) were determined in aphid tissues, at each temperature. In the second stage, microcalorimetry monitored changes in heat emitted by aphids, at each temperature. Our results showed that A. pomi defense responses varied depending on temperature and were highest at 28 °C. The flexible activity of enzymes and increase in the metabolic rate played the role of adaptive mechanisms and ran more effectively at higher temperatures. The A. pomi thus protected itself against ROS excessive induction and the aphids were able to respond quickly to environmental stress

    Ribosomal Protein uL11 as a Regulator of Metabolic Circuits Related to Aging and Cell Cycle

    No full text
    Aging is a biological phenomenon common to all living organisms. It is thought that the rate of aging is influenced by diverse factors, in many cases related to the control of energy metabolism, i.e., the so-called pro-longevity effects of starvation. Translation, regarded as the main energy consumption process, lies at the center of interest, as it has a significant impact on the longevity phenomenon. It has been shown that perturbations in the translational apparatus may lead to a lower rate of aging. Therefore, the main aim of this study was to investigate aging in relation to the protein biosynthesis circuit, taking into account the uL11 ribosomal protein as a vital ribosomal element. To this end, we used set of yeast mutants with deleted single uL11A or uL11B genes and a double disruptant uL11AB mutant. We applied an integrated approach analyzing a broad range of biological parameters of yeast mutant cells, especially the longevity phenomenon, supplemented with biochemical and high throughput transcriptomic and metobolomic approaches. The analysis showed that the longevity phenomenon is not fully related to the commonly considered energy restriction effect, thus the slow-down of translation does not represent the sole source of aging. Additionally, we showed that uL11 can be classified as a moonlighting protein with extra-ribosomal function having cell-cycle regulatory potential

    <p>Detection of the chemical changes in blood, liver, and brain caused by electromagnetic field exposure using Raman spectroscopy, biochemical assays combined with multivariate analyses</p>

    No full text
    The effects of the electromagnetic field on living organisms have been studied for several years. In this article, we showed what kind of cold change an extremely low-frequency electromagnetic field (ELF-MF) exposure 500 mu T 50 Hz by using a Meritt Coil System causes in the samples of the brain and liver samples. To measure oxidative load, we measured malondialdehyde (MDA) and glutathione (GSH) levels. To identify the chemical changes, we collected Raman spectra of cerebellum, left brain, right brain and liver tissue from the control group of animals and from the animal, which were exposed to an electromagnetic field (ELF-MF group). Obtained results showed, that lipid peroxidation was increased and the antioxidant response was decreased. In the brain samples the shift of peaks corresponding to the amide III vibrations existed after ELF-MF exposure. Structural changes were detected in CH2 vibrations originating from lipids in both hemispheres. Additionally, the number of amide III bonds was increased with ELF-MF exposure in the cerebellum and left-brain tissue. In liver tissue higher Raman intensities were visible in the tissues from the ELF-MF group. In this group electromagnetic field also caused structural changes in lipids. Principal component analysis (PCA) showed, that it is possible to distinguish ELF-MF and control groups. Consequently, hierarchical component analysis (HCA) showed that tissues from ELF-MF and control groups separately created similarity with the groups. Obtained results suggest that the electromagnetic field caused structural and quantitative chemical changes in brain and liver tissue. Additionally, present data suggest that ELF-MF plays an important role in the regulation of enzyme activity and has effects on biochemical processes, possibly improved by production of ROS

    Application of Spectroscopic Methods for the Identification of Superoxide Dismutases in Cyanobacteria

    No full text
    Superoxide dismutases (SODs) belong to the group of metalloenzymes that remove superoxide anion radicals and they have been identified in three domains of life: Bacteria, Archaea and Eucarya. SODs in Synechocystis sp. PCC 6803, Gloeobacter violaceus CCALA 979, and Geitlerinema sp. ZHR1A were investigated. We hypothesized that iron (FeSOD) and/or manganese (MnSOD) dominate as active forms in these cyanobacteria. Activity staining and three different spectroscopic methods of SOD activity bands excised from the gels were used to identify a suitable metal in the separated samples. FeSODs or enzymes belonging to the Fe-MnSOD superfamily were detected. The spectroscopic analyses showed that only Fe is present in the SOD activity bands. We found FeSOD in Synechocystis sp. PCC 6803 while two forms in G. violaceus and Geitlerinema sp. ZHR1A: FeSOD1 and FeSOD2 were present. However, no active Cu/ZnSODs were identified in G. violaceus and Geitlerinema sp. ZHR1A. We have shown that selected spectroscopic techniques can be complementary to the commonly used method of staining for SOD activity in a gel. Furthermore, the occurrence of active SODs in the cyanobacteria studied is also discussed in the context of SOD evolution in oxyphotrophs

    Effects of Temperature on Lifespan of Drosophila melanogaster from Different Genetic Backgrounds: Links between Metabolic Rate and Longevity

    No full text
    Despite many studies of the aging process, questions about key factors ensuring longevity have not yet found clear answers. Temperature seems to be one of the most important factors regulating lifespan. However, the genetic background may also play a key role in determining longevity. The aim of this study was to investigate the relationship between the temperature, genetic background (fruit fly origin), and metabolic rate on lifespan. Experiments were performed with the use of the wild type Drosophila melanogaster fruit flies originating from Australia, Canada, and Benin and the reference OregonR strain. The metabolic rate of D. melanogaster was measured at 20 &deg;C, 25 &deg;C, and 28 &deg;C in an isothermal calorimeter. We found a strong negative relationship between the total heat flow and longevity. A high metabolic rate leads to increased aging in males and females in all strains. Furthermore, our results showed that temperature has a significant effect on fecundity and body weight. We also showed the usefulness of the isothermal calorimetry method to study the effect of environmental stress conditions on the metabolic activity of insects. This may be particularly important for the forecasting of impact of global warming on metabolic activity and lifespan of various insects
    corecore