92 research outputs found
Withholding temozolomide in glioblastoma patients with unmethylated MGMT promoter - still a dilemma?
Combining chromosomal arm status and significantly aberrant genomic locations reveals new cancer subtypes
Many types of tumors exhibit chromosomal losses or gains, as well as local
amplifications and deletions. Within any given tumor type, sample specific
amplifications and deletionsare also observed. Typically, a region that is
aberrant in more tumors,or whose copy number change is stronger, would be
considered as a more promising candidate to be biologically relevant to cancer.
We sought for an intuitive method to define such aberrations and prioritize
them. We define V, the volume associated with an aberration, as the product of
three factors: a. fraction of patients with the aberration, b. the aberrations
length and c. its amplitude. Our algorithm compares the values of V derived
from real data to a null distribution obtained by permutations, and yields the
statistical significance, p value, of the measured value of V. We detected
genetic locations that were significantly aberrant and combined them with
chromosomal arm status to create a succint fingerprint of the tumor genome.
This genomic fingerprint is used to visualize the tumors, highlighting events
that are co ocurring or mutually exclusive. We allpy the method on three
different public array CGH datasets of Medulloblastoma and Neuroblastoma, and
demonstrate its ability to detect chromosomal regions that were known to be
altered in the tested cancer types, as well as to suggest new genomic locations
to be tested. We identified a potential new subtype of Medulloblastoma, which
is analogous to Neuroblastoma type 1.Comment: 34 pages, 3 figures; to appear in Cancer Informatic
Detection by 32P-postlabeling of thymidine glycol in γ-irradiated DNA
The 32P-postlabeling method has been adapted for the analysis of thymidine-cis-glycol-3′-phosphate (cis-dTGp, cis-5,6-dihydroxy-5,6-dihydrothymidine-3′-phosphate). Cis-dTGp was isolated and purified from normal nucleotides by phenylboronate affinity chromatography and phosphorylated by T4 polynucleotide kinase in presence of 1 mM BeCl2 at pH 7.5. These modifications of the postlabeling method resulted in a 5′-phosphorylation of dTGp with a labeling efficiency of up to 20% whereas the natural nucleotides were almost completely dephosphorylated at the 3′ position under these conditions. The reaction products, containing radio-labeled thymidine-cis-glycol-3′ ,5′-bis-[5′-32P]phosphate (cis-*pdTGp), were separated by two-dimensional anion-exchange TLC on polyethyleneimine cellulose sheets. Boric acid was added in the second dimension in order to selectively retard cis-glycols. The method was applied to γ-irradiated nucleotides and calf thymus DNA. In the nucleotide mixture, 330-99 000 thymine glycol (TG) moieties were detected per 106 thymines (T) in a dose range of 14-1000 Gy respectively. In DNA, these values ranged from 400 to 2700 TG/106 T. The data are in good agreement with methods using radiochemical and immunological techniques. Non-irradiated DNA showed a background level of 1OTG/106 T. This practical limit of detection was higher than can be achieved with the postlabeling technique, indicating that the present method might be a sensitive alternative for a determination of oxidative DNA damag
BET protein inhibition sensitizes glioblastoma cells to temozolomide treatment by attenuating MGMT expression
Bromodomain and extra-terminal tail (BET) proteins have been identified as potential epigenetic targets in cancer, including glioblastoma. These epigenetic modifiers link the histone code to gene transcription that can be disrupted with small molecule BET inhibitors (BETi). With the aim of developing rational combination treatments for glioblastoma, we analyzed BETi-induced differential gene expression in glioblastoma derived-spheres, and identified 6 distinct response patterns. To uncover emerging actionable vulnerabilities that can be targeted with a second drug, we extracted the 169 significantly disturbed DNA Damage Response genes and inspected their response pattern. The most prominent candidate with consistent downregulation, was the O-6-methylguanine-DNA methyltransferase (MGMT) gene, a known resistance factor for alkylating agent therapy in glioblastoma. BETi not only reduced MGMT expression in GBM cells, but also inhibited its induction, typically observed upon temozolomide treatment. To determine the potential clinical relevance, we evaluated the specificity of the effect on MGMT expression and MGMT mediated treatment resistance to temozolomide. BETi-mediated attenuation of MGMT expression was associated with reduction of BRD4- and Pol II-binding at the MGMT promoter. On the functional level, we demonstrated that ectopic expression of MGMT under an unrelated promoter was not affected by BETi, while under the same conditions, pharmacologic inhibition of MGMT restored the sensitivity to temozolomide, reflected in an increased level of γ-H2AX, a proxy for DNA double-strand breaks. Importantly, expression of MSH6 and MSH2, which are required for sensitivity to unrepaired O6-methylguanine-lesions, was only briefly affected by BETi. Taken together, the addition of BET-inhibitors to the current standard of care, comprising temozolomide treatment, may sensitize the 50% of patients whose glioblastoma exert an unmethylated MGMT promoter
Recommended from our members
Hyperpolarized 13C-glucose magnetic resonance highlights reduced aerobic glycolysis in vivo in infiltrative glioblastoma.
Glioblastoma (GBM) is the most aggressive brain tumor type in adults. GBM is heterogeneous, with a compact core lesion surrounded by an invasive tumor front. This front is highly relevant for tumor recurrence but is generally non-detectable using standard imaging techniques. Recent studies demonstrated distinct metabolic profiles of the invasive phenotype in GBM. Magnetic resonance (MR) of hyperpolarized 13C-labeled probes is a rapidly advancing field that provides real-time metabolic information. Here, we applied hyperpolarized 13C-glucose MR to mouse GBM models. Compared to controls, the amount of lactate produced from hyperpolarized glucose was higher in the compact GBM model, consistent with the accepted "Warburg effect". However, the opposite response was observed in models reflecting the invasive zone, with less lactate produced than in controls, implying a reduction in aerobic glycolysis. These striking differences could be used to map the metabolic heterogeneity in GBM and to visualize the infiltrative front of GBM
Modulation of Angiogenic and Inflammatory Response in Glioblastoma by Hypoxia
Glioblastoma are rapidly proliferating brain tumors in which hypoxia is readily recognizable, as indicated by focal or extensive necrosis and vascular proliferation, two independent diagnostic criteria for glioblastoma. Gene expression profiling of glioblastoma revealed a gene expression signature associated with hypoxia-regulated genes. The correlated gene set emerging from unsupervised analysis comprised known hypoxia-inducible genes involved in angiogenesis and inflammation such as VEGF and BIRC3, respectively. The relationship between hypoxia-modulated angiogenic genes and inflammatory genes was associated with outcome in our cohort of glioblastoma patients treated within prospective clinical trials of combined chemoradiotherapy. The hypoxia regulation of several new genes comprised in this cluster including ZNF395, TNFAIP3, and TREM1 was experimentally confirmed in glioma cell lines and primary monocytes exposed to hypoxia in vitro. Interestingly, the cluster seems to characterize differential response of tumor cells, stromal cells and the macrophage/microglia compartment to hypoxic conditions. Most genes classically associated with the inflammatory compartment are part of the NF-kappaB signaling pathway including TNFAIP3 and BIRC3 that have been shown to be involved in resistance to chemotherapy
MGMT Promoter Methylation Cutoff with Safety Margin for Selecting Glioblastoma Patients into Trials Omitting Temozolomide. A Pooled Analysis of Four Clinical Trials
PURPOSE
The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) gene promoter is predictive for benefit from temozolomide in glioblastoma. A clinically optimized cutoff was sought allowing patient selection for therapy without temozolomide, while avoiding to withhold it from patients who may potentially benefit.
EXPERIMENTAL DESIGN
Quantitative MGMT methylation-specific PCR data were obtained for newly diagnosed glioblastoma patients screened or treated with standard radiotherapy and temozolomide in four randomized trials. The pooled dataset was randomly split into a training and test dataset. The unsupervised cutoff was obtained at a 50% probability to be (un)methylated. Receiver operating characteristics (ROC) analysis identified an optimal cutoff supervised by overall survival (OS).
RESULTS
For 4041 patients valid MGMT results were obtained, whereof 1725 were randomized. The unsupervised cutoff in the training dataset was 1.27 (log2[1000x(MGMT+1)/ACTB]), separating unmethylated and methylated patients. The optimal supervised cutoff for unmethylated patients was -0.28 (AUC=0.61), classifying "truly unmethylated" (≤-0.28) and "grey zone" patients (>-0.28, ≤1.27), the latter comprising ~10% of cases. In contrast, for MGMT methylated patients (>1.27) more methylation was not related to better outcome. Both methylated and grey zone patients performed significantly better for OS than truly unmethylated patients (HR=0.35, 95% CI: 0.27-0.45, p<0.0001; HR=0.58, 95% CI: 0.43-0.78, p<0.001), validated in the test dataset. The MGMT assay was highly reproducible upon retesting of 218 paired samples (R2=0.94).
CONCLUSIONS
Low MGMT methylation (grey zone) may confer some sensitivity to temozolomide treatment, hence the lower safety margin should be considered for selecting unmethylated glioblastoma patients into trials omitting temozolomide
Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma
Background Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. Methods We performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. Results Diffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. Conclusion TILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastom
Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study
Background Survival outcomes for patients with glioblastoma remain poor, particularly for patients with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) gene promoter. This phase II, randomized, open-label, multicenter trial investigated the efficacy and safety of 2 dose regimens of the selective integrin inhibitor cilengitide combined with standard chemoradiotherapy in patients with newly diagnosed glioblastoma and an unmethylated MGMT promoter. Methods Overall, 265 patients were randomized (1:1:1) to standard cilengitide (2000 mg 2×/wk; n = 88), intensive cilengitide (2000 mg 5×/wk during wk 1−6, thereafter 2×/wk; n = 88), or a control arm (chemoradiotherapy alone; n = 89). Cilengitide was administered intravenously in combination with daily temozolomide (TMZ) and concomitant radiotherapy (RT; wk 1−6), followed by TMZ maintenance therapy (TMZ/RT→TMZ). The primary endpoint was overall survival; secondary endpoints included progression-free survival, pharmacokinetics, and safety and tolerability. Results Median overall survival was 16.3 months in the standard cilengitide arm (hazard ratio [HR], 0.686; 95% CI: 0.484, 0.972; P = .032) and 14.5 months in the intensive cilengitide arm (HR, 0.858; 95% CI: 0.612, 1.204; P = .3771) versus 13.4 months in the control arm. Median progression-free survival assessed per independent review committee was 5.6 months (HR, 0.822; 95% CI: 0.595, 1.134) and 5.9 months (HR, 0.794; 95% CI: 0.575, 1.096) in the standard and intensive cilengitide arms, respectively, versus 4.1 months in the control arm. Cilengitide was well tolerated. Conclusions Standard and intensive cilengitide dose regimens were well tolerated in combination with TMZ/RT→TMZ. Inconsistent overall survival and progression-free survival outcomes and a limited sample size did not allow firm conclusions regarding clinical efficacy in this exploratory phase II stud
- …