5 research outputs found

    ADAM9 is highly expressed in renal cell cancer and is associated with tumour progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><b>A D</b>isintegrin <b>A</b>nd <b>M</b>etalloprotease (ADAM) 9 has been implicated in tumour progression of various solid tumours, however, little is known about its role in renal cell carcinoma. We evaluated the expression of ADAM9 on protein and transcript level in a clinico-pathologically characterized renal cell cancer cohort.</p> <p>Methods</p> <p>108 renal cancer cases were immunostained for ADAM9 on a tissue-micro-array. For 30 additional cases, ADAM9 mRNA of microdissected tumour and normal tissue was analyzed via quantitative RT-PCR. SPSS 14.0 was used to apply crosstables (Fisher's exact test and χ<sup>2</sup>-test), correlations and univariate as well as multivariate survival analyses.</p> <p>Results</p> <p>ADAM9 was significantly up-regulated in renal cancer in comparison to the adjacent normal tissue on mRNA level. On protein level, ADAM9 was significantly associated with higher tumour grade, positive nodal status and distant metastasis. Furthermore, ADAM9 protein expression was significantly associated with shortened patient survival in the univariate analysis.</p> <p>Conclusion</p> <p>ADAM9 is strongly expressed in a large proportion of renal cell cancers, concordant with findings in other tumour entities. Additionally, ADAM9 expression is significantly associated with markers of unfavourable prognosis. Whether the demonstrated prognostic value of ADAM9 is independent from other tumour parameters will have to be verified in larger study cohorts.</p

    Assessment of hydrocarbon degradation potentials in a plant–microbe interaction system with oil sludge contamination: A sustainable solution

    No full text
    <p>A pot culture experiment was conducted for 90 days for the evaluation of oil and total petroleum hydrocarbon (TPH) degradation in vegetated and non-vegetated treatments of real-field oil-sludge-contaminated soil. Five different treatments include (T1) control, 2% oil-sludge-contaminated soil; (T2), augmentation of microbial consortium; (T3), <i>Vertiveria zizanioides</i>; (T4), bio-augmentation along with <i>V. zizanioides</i>; and (T5), bio-augmentation with <i>V. zizanioides</i> and bulking agent. During the study, oil reduction, TPH, and degradation of its fractions were determined. Physico-chemical and microbiological parameters of soil were also monitored simultaneously. At the end of the experimental period, oil content (85%) was reduced maximally in bio-augmented rhizospheric treatments (T4 and T5) as compared to control (27%). TPH reduction was observed to be 88 and 89% in bio-augmented rhizospheric soil (T4 and T5 treatments), whereas in non-rhizospheric and control (T2 and T1), TPH reduction was 78 and 37%, respectively. Degradation of aromatic fraction after 90 days in bio-augmented rhizosphere of treatments T4 and T5 was found to 91 and 92%, respectively. In microbial (T2) and <i>Vertiveria</i> treatments (T3), degradation of aromatic fraction was 83 and 68%, respectively. A threefold increase in soil dehydrogenase activity and noticeable changes in organic carbon content and water-holding capacity were also observed which indicated maximum degradation of oil and its fractions in combined treatment of plants and microbes. It is concluded that the plant–microbe soil system helps to restore soil quality and can be used as an effective tool for the remediation of oil-sludge-contaminated sites.</p

    Study of microbial diversity in plant–microbe interaction system with oil sludge contamination

    No full text
    <p>A 90 days greenhouse experiment was conducted for evaluation of soil microbial diversity in different treatments of rhizospheric and nonrhizospheric oil sludge contaminated soil. Various pot treatments (T1–T5) were as follows: 2% oil sludge contaminated soil was considered as control (T1); augmentation of control with preadapted microbial consortium was T2; addition of Vetiver zizanioide to control was T3; bioaugmentation of control along with V. zizanioide was T4; and bioaugmentation with V. zizanioide and bulking agent was T5. During the study, different microbial populations were determined in all treatments. Additionally, soil microbial diversity using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) of 16S rDNA was carried out. At the end of experimental period, significant increase in microbial number in bioaugmented rhizospheric treatments (T4 and T5) was observed as compared to non-rhizospheric and non-bioaugmented treatments (T2 and T3). The community and sequencing results revealed that combined treatment of plant and microbes resulted in improved microbial species and number. The dominant phyla belonged to γ proteobacteria, β proteobacteria, Chloroflexi, firmicutes, and uncultured bacteria. It is concluded that plant–microbe–soil system supports immense oil degrading microbial diversity and can be used as an effective indicator tool for remediation of oil sludge contaminated sites.</p
    corecore