29 research outputs found

    Foveal visual acuity is worse and shows stronger contour interaction effects for contrast-modulated than luminance-modulated Cs

    Get PDF
    Contrast-modulated (CM) stimuli are processed by spatial mechanisms that operate at larger spatial scales than those processing luminance-modulated (LM) stimuli and may be more prone to deficits in developing, amblyopic, and aging visual systems. Understanding neural mechanisms of contour interaction or crowding will help in detecting disorders of spatial vision. In this study, contour interaction effects on visual acuity for LM and CM C and bar stimuli are assessed in normal foveal vision. In Experiment 1, visual acuity is measured for all-LM and all-CM stimuli, at ~3.5× above their respective modulation thresholds. In Experiment 2, visual acuity is measured for Cs and bars of different type (LM C with CM bars and vice versa). Visual acuity is degraded for CM compared with LM Cs (0.46 ± 0.04 logMAR vs. 0.18 ± 0.04 logMAR). With nearby bars, CM acuity is degraded further (0.23 ± 0.01 logMAR or ~2 lines on an acuity chart), significantly more than LM acuity (0.11 ± 0.01 logMAR, ~1 line). Contour interaction for CM stimuli extends over greater distances (arcmin) than it does for LM stimuli, but extents are similar with respect to acuities (~3.5× the C gap width). Contour interaction is evident when the Cs and bars are defined differently: it is stronger when an LM C is flanked by CM bars (0.17 ± 0.03 logMAR) than when a CM C is flanked by LM bars (0.08 ± 0.02 logMAR). Our results suggest that contour interaction for foveally viewed acuity stimuli involves feature integration, such that the outputs of receptive fields representing Cs and bars are combined. Contour interaction operates at LM and CM representational stages, it can occur across stage, and it is enhanced at the CM stage. Greater contour interaction for CM Cs and bars could hold value for visual acuity testing and earlier diagnosis of conditions for which crowding is important, such as in amblyopia

    Assessment of compensation and simulation filters for colour vision deficiency

    Get PDF
    [Excerpt] Compensation filters may improve perception in humans with Red-Green colour vision deficiency (CVD) whilst simulation filters may mimic CVD in colour vision normals (CVN). A previous study (Lillo et al. 2014) showed that Variantor simulation filters mimic protanopia in a discrimination task when tested only at pseudoachromatic confusion axes. Studies (e.g. Gómez-Robledo et al. 2018) using EnChroma compensation filters (EnChroma, Berkeley, USA) have not found statistically significant improvements in colour vision. We aimed to assess effects of simulation (Variantor) and compensation (EnChroma) filters on perceptual performance in discrimination and colour naming tasks.- This work was supported by an Evelyn Trust Grant (to SJW) and HEFCE QR (Quality Related) Funds (to Anglia Vision Research) to support a Postdoctoral Research Fellow (LA) and visits (LA and JMML) to the laboratories of Anglia Vision Research, to facilitate completion of this project. The authors thank Ashley Gray (a research assistant supported by the QR fund), Emily Mailman and Laura Douds (who were undergraduate Optometry students) for their help with data collection

    More superimposition for contrast-modulated than luminance-modulated stimuli during binocular rivalry

    Get PDF
    Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account

    Grouping of flankers is similar in children to adults and does not break crowding.

    No full text

    Grouping Effects on Foveal Spatial Interactions in Children

    No full text

    The psychophysics of detecting binocular discrepancies of luminance

    Get PDF
    AbstractIn the natural world, a binocular discrepancy of luminance can signal a glossy surface. Using a spatial forced choice task, we have measured the ability of subjects to detect binocular luminance disparities. We show that the detection of binocular luminance disparity shares several basic psychophysical features with the detection of surface properties such as lightness and chromaticity: an approximation to Weber’s Law, spatial summation, temporal summation, and a deterioration with increasing eccentricity. We also discuss whether color-deficient subjects could derive reliable information about chromaticity from the binocular disparities of luminance induced by a monocularly worn color filter

    The Effects of Blur and Eccentric Viewing on Adult Acuity for Pediatric Tests: Implications for Amblyopia Detection

    No full text
    Purpose.: The detection of amblyopia in children relies on an accurate assessment of visual acuity. Visual deficits in anisometropic and strabismic amblyopia are different, but the influence of chart design, in particular position, and type of crowding features on visual acuity in the two types of amblyopia, is not clear. Certain aspects of amblyopic spatial vision are mimicked in healthy individuals by imposing increasing levels of blur and retinal eccentricity. We measured the effects of these conditions on visual acuity in healthy adults, with crowded and uncrowded vision tests. Methods.: Visual acuity was measured under conditions of blur (0–4 D) and eccentric viewing (0–5 degrees) using high-contrast optotypes derived from common children's acuity charts. Optotypes were presented in isolation, in commercially available crowded configurations, and in configurations with closer target-flanker separations than those currently available. Results.: Dioptric blur had similar degradative effects on crowded and isolated visual acuity (P > 0.05), whereas eccentric viewing resulted in a larger deterioration of visual acuity for crowded tests (E 2 of 0.86–1.06) than for isolated optotypes (E 2 of 1.57–1.72) (P < 0.05). Maximum crowding effects occurred for closer target-flanker separations than those currently used commercially. Conclusions.: In so far as blur and eccentric viewing mimic spatial acuity deficits in amblyopia, the results suggest that crowded tests might be of limited value in the detection of anisometropic amblyopia, but should be valuable in the detection of strabismic amblyopia. Crowding effects would be greater if flanking features were placed closer to the target than they currently are in commercially available charts

    Grouping effects on foveal spatial interactions in children

    Get PDF
    Purpose: Grouping of flankers from the target can modulate crowding in adults. Visual acuity in children is measured clinically using charts with targets and different flankers to enhance spatial interactions. We investigated grouping effects on interactions using visual acuity letters, flanked by contours and letters, in children. Methods: Visual acuity for isolated and flanked letters was measured in 155 three- to 11-year old children and 32 adults. Flankers were one stroke width from the target and were a box or four bars and black or red letters. Magnitudes of interaction were flanked minus isolated logMAR acuities. Psychometric function slopes were also examined. Results: Magnitudes of interaction by contours did not change significantly with age. They were 0.047 ± 0.014 logMAR more with bars than a box. Interaction from flanking letters reduced with age, adults being not different from 9- to 11-year-olds for black and red letter surrounds. It was weaker by 0.033 ± 0.013 logMAR when a black letter was surrounded by red rather than black letters. Psychometric function slopes for visual acuity were steepest for the youngest children (3–5 years). Conclusions: For contour and letter flankers, grouping effects on interaction magnitude are age independent. Grouping bars into a box forming a single object reduces magnitude of effect. Grouping letter flankers by color and ungrouping them from the target reduce interaction magnitude by ∼8%, suggesting that luminance-defined form dominates. Differently colored letter flankers of high-luminance contrast on acuity charts could draw attention to the target but retain significant interaction strength

    Grouping of flankers is similar in children to adults and does not break crowding.

    No full text

    Contrast-modulated stimuli produce more superimposition and predominate perception when competing with comparable luminance-modulated stimuli during interocular grouping

    No full text
    AbstractInterocular grouping (IOG) is a binocular visual function that can arise during multi-stable perception. IOG perception was initiated using split-grating stimuli constructed from luminance (L), luminance-modulated noise (LM) and contrast-modulated noise (CM). In Experiment 1, three different visibility levels were used for L and LM (or first-order) stimuli, and compared to fixed-visibility CM (or second-order) stimuli. Eight binocularly normal participants indicated whether they perceived full horizontal or vertical gratings, superimposition, or other (piecemeal and eye-of-origin) percepts. CM stimuli rarely generated full IOG, but predominantly generated superimposition. In Experiment 2, Levelt’s modified laws were tested for IOG in nine participants. Split-gratings presented to each eye contained different visibility LM gratings, or LM and CM gratings. The results for the LM-vs-LM conditions mostly followed the predictions of Levelt’s modified laws, whereas the results for the LM-vs-CM conditions did not. Counterintuitively, when high-visibility LM and low-visibility CM split-gratings were used, high-visibility LM components did not predominate IOG perception. Our findings suggest that higher proportions of superimposition during CM-vs-CM viewing are due to binocular combination, rather than mutual inhibition. It implies that IOG percepts are more likely to be mediated at an earlier monocular, rather than a binocular stage. Our previously proposed conceptual framework for conventional binocular rivalry, which includes asymmetric feedback, visual saliency, or a combination of both (Skerswetat et al. Sci Rep 8:14432, 2018), might also account for IOG. We speculate that opponency neurons might mediate coherent percepts when dissimilar information separately enters the eyes.</jats:p
    corecore