209 research outputs found

    Targeting Brutons Tyrosine Kinase in Chronic Lymphocytic Leukemia at the Crossroad between Intrinsic and Extrinsic Pro-survival Signals

    Get PDF
    Chemo immunotherapies for chronic lymphocytic leukemia (CLL) showed a positive impact on clinical outcome, but many patients relapsed or become refractory to the available treatments. The main goal of the researchers in CLL is the identification of specific targets in order to develop new therapeutic strategies to cure the disease. The B cell receptor-signalling pathway is necessary for survival of malignant B cells and its related molecules recently become new targets for therapy. Moreover, leukemic microenvironment delivers survival signals to neoplastic cells also overcoming the apoptotic effect induced by traditional drugs. In this context, the investigation of Bruton\u2019s tyrosine kinase (Btk) is useful in: i) dissecting CLL pathogenesis; ii) finding new therapeutic approaches striking simultaneously intrinsic as well as extrinsic pro-survival signals in CLL. This paper will review these main topics

    Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): implications for neoplastic cell survival

    Get PDF
    Leukemic cells from Chronic Lymphocytic Leukemia (CLL) patients interact with stromal cells of the surrounding microenvironment. Mesenchymal Stromal Cells (MSCs) represent the main population in CLL marrow stroma, which may play a key role for disease support and progression. In this study we evaluated whether MSCs influence in vitro CLL cell survival. MSCs were isolated from the bone marrow of 46 CLL patients and were characterized by flow cytometry analysis. Following co-culture of MSCs and leukemic B cells, we demonstrated that MSCs were able to improve leukemic B cell viability, this latter being differently dependent from the signals coming from MSCs. In addition, we found that the co-culture of MSCs with leukemic B cells induced an increased production of IL-8, CCL4, CCL11, and CXCL10 chemokines.As far as drug resistance is concerned, MSCs counteract the cytotoxic effect of Fludarabine/Cyclophosphamide administration in vivo, whereas they do not protect CLL cells from the apoptosis induced by the kinase inhibitors Bafetinib and Ibrutinib. The evidence that leukemic clones are conditioned by environmental stimuli suggest new putative targets for therapy in CLL patients

    Bendamustine plus rituximab is an effective first-line treatment in hairy cell leukemia variant: A report of three cases

    Get PDF
    Hairy cell leukemia variant (HCLv) is a chronic lymphoproliferative disorder classified as a provisional entity in the 2016 WHO Classification of Lymphoid Tumors. HCLv is characterized by unfavorable prognosis, low complete remission rates and limited disease control following classical hairy cell leukemia-based regimens. In this study, we report 3 cases of elderly patients with treatment-naive, TP53 un-mutated HCLv, who were effectively treated with four cycles of bendamustine plus rituximab. The regimen was completed in all the patients with acceptable toxicity. All patients achieved a complete clinical response with no evidence of residual disease at bone marrow biopsy and flow-cytometry examination. After a median follow-up of 19 months, the 3 subjects are still in complete remission. In this work, bendamustine plus rituximab proved to be an effective and feasible first-line treatment strategy for elderly patients with TP53 un-mutated HCLv

    STAT3 mutation impacts biological and clinical features of T-LGL leukemia

    Get PDF
    STAT3 mutations have been described in 30-40% of T-large granular lymphocyte (T-LGL) leukemia patients, leading to STAT3 pathway activation. Considering the heterogeneity of the disease and the several immunophenotypes that LGL clone may express, the aim of this work was to evaluate whether STAT3 mutations might be associated with a distinctive LGL immunophenotype and/or might be indicative for specific clinical features.Our series of cases included a pilot cohort of 101 T-LGL leukemia patients (68 CD8+/CD4- and 33 CD4+/CD8\ub1) from Padua Hematology Unit (Italy) and a validation cohort of additional 20 patients from Rennes Hematology Unit (France).Our results indicate that i) CD8+ T-LGL leukemia patients with CD16+/CD56- immunophenotype identify a subset of patients characterized by the presence of STAT3 mutations and neutropenia, ii) CD4+/CD8\ub1 T-LGL leukemia are devoid of STAT3 mutations but characterized by STAT5b mutations, and iii) a correlation exists between STAT3 activation and presence of Fas ligand, this molecule resulting highly expressed in CD8+/CD16+/CD56- patients. Experiments with stimulation and inhibition of STAT3 phosphorylation confirmed this relationship. In conclusion, our data show that T-LGL leukemia with specific molecular and phenotypic patterns is associated with discrete clinical features contributing to get insights into molecular bases accounting for the development of Fas ligand-mediated neutropenia

    In Chronic Lymphocytic Leukemia the JAK2/STAT3 Pathway Is Constitutively Activated and Its Inhibition Leads to CLL Cell Death Unaffected by the Protective Bone Marrow Microenvironment

    Get PDF
    The bone marrow microenvironment promotes proliferation and drug resistance in chronic lymphocytic leukemia (CLL). Although ibrutinib is active in CLL, it is rarely able to clear leukemic cells protected by bone marrow mesenchymal stromal cells (BMSCs) within the marrow niche. We investigated the modulation of JAK2/STAT3 pathway in CLL by BMSCs and its targeting with AG490 (JAK2 inhibitor) or Stattic (STAT3 inhibitor). B cells collected from controls and CLL patients, were treated with medium alone, ibrutinib, JAK/Signal Transducer and Activator of Transcription (STAT) inhibitors, or both drugs, in the presence of absence of BMSCs. JAK2/STAT3 axis was evaluated by western blotting, flow cytometry, and confocal microscopy. We demonstrated that STAT3 was phosphorylated in Tyr705 in the majority of CLL patients at basal condition, and increased following co-cultures with BMSCs or IL-6. Treatment with AG490, but not Stattic, caused STAT3 and Lyn dephosphorylation, through re-activation of SHP-1, and triggered CLL apoptosis even when leukemic cells were cultured on BMSC layers. Moreover, while BMSCs hamper ibrutinib activity, the combination of ibrutinib+JAK/STAT inhibitors increase ibrutinib-mediated leukemic cell death, bypassing the pro-survival stimuli derived from BMSCs. We herein provide evidence that JAK2/STAT3 signaling might play a key role in the regulation of CLL-BMSC interactions and its inhibition enhances ibrutinib, counteracting the bone marrow niche

    p66Shc deficiency in CLL cells enhances PD-L1 expression and suppresses immune synapse formation

    Get PDF
    Introduction: Escape from immunosurveillance is a hallmark of chronic lymphocytic leukemia (CLL) cells. In the protective niche of lymphoid organs, leukemic cells suppress the ability of T lymphocytes to form the immune synapse (IS), thereby hampering T-cell mediated anti-tumoral activities. By binding its cognate receptor PD-1 at the surface of T lymphocytes, the inhibitory ligand PD-L1, which is overexpressed in CLL cells, mediates the T-cell suppressive activities of CLL cells. However, the molecular mechanism underlying PD-L1 overexpression in CLL cells remains unknown. We have previously reported a defective expression of the pro-apoptotic and pro-oxidant adaptor p66Shc in CLL cells, which is causally related to an impairment in intracellular reactive oxygen species (ROS) production and to the activation of the ROS-sensitive transcription factor NF-ÎşB. The fact that PD-L1 expression is regulated by NF-ÎşB suggests a mechanistic relationship between p66Shc deficiency and PD-L1 overexpression in CLL cells. Methods: 62 treatment-naive CLL patients and 43 healthy donors were included in this study. PD-L1 and p66Shc expression was quantified in B cells by flow cytometry and qRT-PCR. IS architecture and local signaling was assessed by flow cytometry and confocal microscopy. CD8+ cell killing activity was assessed by flow cytometry. Results: Here we show that residual p66Shc expression in leukemic cells isolated both from CLL patients and from the CLL mouse model EÎĽ-TCL1 inversely correlated with PD-L1 expression. We also show that the PD-L1 increase prevented leukemic cells from forming ISs with T lymphocytes. Reconstitution of p66Shc, but not of a ROS-defective mutant, in both CLL cells and the CLL-derived cell line MEC-1, enhanced intracellular ROS and decreased PD-L1 expression. Similar results were obtained following treatment of CLL cells with H2O2 as exogenous source of ROS, that normalized PD-L1 expression and recovered IS formation. Discussion: Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to enhance PD-L1 expression and provides a mechanistic basis for the suppression of T cell-mediated anti-tumoral functions in the immunosuppressive lymphoid niche

    Targeted activation of the SHP-1/PP2A signaling axis elicits apoptosis of chronic lymphocytic leukemia cells

    Get PDF
    Lyn, a member of the Src family of kinases, is a key factor in the dys-regulation of survival and apoptotic pathways of malignant B cells in chronic lymphocytic leukemia. One of the effects of Lyn's action is spatial and functional segregation of the tyrosine phosphatase SHP-1 into two pools, one beneath the plasma membrane in an active state promoting pro-survival signals, the other in the cytosol in an inhibited conformation and unable to counter the elevated level of cytosolic tyrosine phosphorylation. We herein show that SHP-1 activity can be elicited directly by nintedanib, an agent also known as a triple angiokinase inhibitor, circumventing the phospho-S591-dependent inhibition of the phosphatase, leading to the dephosphorylation of pro-apoptotic players such as procaspase-8 and serine/threonine phosphatase 2A, eventually triggering apoptosis. Furthermore, the activation of PP2A by using MP07-66, a novel FTY720 analog, stimulated SHP-1 activity via dephosphorylation of phospho-S591, which unveiled the existence of a positive feedback signaling loop involving the two phosphatases. In addition to providing further insights into the molecular basis of this disease, our findings indicate that the PP2A/SHP-1 axis may emerge as an attractive, novel target for the development of alternative strategies in the treatment of chronic lymphocytic leukemia

    Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits

    Get PDF
    Apple (Malus 7domestica Borkh) fruits are stored for long periods of time at low temperatures (1 \ub0C) leading to the occurrence of physiological disorders. 'Superficial scald' of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress

    Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A.

    Get PDF
    Aberrant protein kinase activities, and the consequent dramatic increase of Ser/Thr and -Tyr phosphorylation, promote the deregulation of the survival pathways in chronic lymphocytic leukemia (CLL), which is crucial to the pathogenesis and progression of the disease. In this study, we show that the tumor suppressor Protein Phosphatase 2A (PP2A), one of the major Ser/Thr phosphatase, is in an inhibited form due to the synergistic contribution of two events, the interaction with its physiological inhibitor SET and the phosphorylation of Y307 of the catalytic subunit of PP2A. The latter event is mediated by Lyn, a Src family kinase previously found to be overexpressed, delocalized and constitutively active in CLL cells. This Lyn/PP2A axis accounts for the persistent high level of phosphorylation of the phosphatase's targets and represents a key connection linking phosphotyrosine- and phosphoserine/threonine-mediated oncogenic signals. The data herein presented show that the disruption of the SET/PP2A complex by a novel FTY720-analogue (MP07-66) devoid of immunosuppressive effects leads to the reactivation of PP2A, which in turn triggers apoptosis of CLL cells. When used in combination with SFK inhibitors, the action of MP07-66 is synergistically amplified, providing a new option in the therapeutic strategy for CLL patients
    • …
    corecore