17 research outputs found

    Noninvasive Assessment of Diffuse Liver Diseases Using Vibration-Controlled Transient Elastography (VCTE)

    Get PDF
    Because of the limitations and invasive nature of liver biopsy, other noninvasive means are being tested for the evaluation of diffuse liver diseases. One of these methods is vibration-controlled transient elastography (VCTE). This chapter reviews the principle of VCTE, the examination technique, the normal range for liver stiffness values, the pathological changes that may influence liver stiffness, as well as the diagnostic performance in several diffuse liver diseases, especially chronic hepatitis C, chronic hepatitis B, nonalcoholic steatohepatitis, and alcoholic liver disease. Apart from the assessment of fibrosis stages, we will also discuss the diagnosis of cirrhosis and its complications as well as other applications of VCTE, reviewing its advantages and limitations

    Noninvasive Evaluation of Fibrosis and Steatosis in Nonalcoholic Fatty Liver Disease by Elastographic Methods

    Get PDF
    An increasingly common cause of chronic liver disease in adults and children is nonalcoholic fatty liver disease (NAFLD). The diagnosis of NAFLD was traditionally based on the histopathological changes of the liver, evaluated by needle liver biopsy, an invasive method, with potential adverse effects and great inter and intraobserver variability. The noninvasive methods for the assessment of both fibrosis and steatosis in patients with NAFLD have increasingly been studied lately. Of these noninvasive methods, in this chapter, we will focus on the methods assessing the stiffness of liver parenchyma, i.e. elastographic methods, of which, the most widely used are ultrasound elastography techniques. We will discuss the principal elastographic methods of some utility in NAFLD, i.e. shear wdave elastography (SWE) (quantitative elastography), and especially transient elastography, point SWE (acoustic radiation force impulse elastography, ARFI) and two-dimensional real-time SWE (Supersonic). For each method usable in NAFLD cases, we will review the method principle, examination technique and performance in NAFLD evaluation

    Noninvasive Assessment of HCV Patients Using Ultrasound Elastography

    No full text
    Among patients with chronic hepatitis C (CHC) infection, extensive research showed that fibrosis progression is a proper surrogate marker for advanced liver disease, eventually leading to dramatic endpoints such as cirrhosis and hepatocellular carcinoma. Therefore, there is growing interest in the use of noninvasive methods for fibrosis assessment in order to replace liver biopsy (LB) in clinical practice and provide optimal risk stratification. Elastographic techniques, such as Vibration Controlled Transient Elastography (VCTE), point-shear wave elastography (p-SWE), and 2D-SWE have shown promising results in this regard, with excellent performance in diagnosing hepatic cirrhosis, and great accuracy for steatosis detection through the Controlled Attenuation Parameter embedded on the VCTE device. In addition, the recent introduction of highly efficient direct-acting antivirals (DAAs) led to viral eradication and a significant decrease in liver damage, lowering the risk of hepatic decompensation, and HCC. Therefore, CHC patients need proper noninvasive and repeatable methods for adequate surveillance, even after treatment, as there still remains a risk of portal hypertension and HCC. However, the usefulness for monitoring fibrosis after the sustained virological response (SVR) needs further research

    Noninvasive Assessment of Hepatitis C Virus Infected Patients Using Vibration-Controlled Transient Elastography

    No full text
    Chronic infection with hepatitis C virus (HCV) is one of the leading causes of cirrhosis and hepatocellular carcinoma (HCC). Surveillance of these patients is an essential strategy in the prevention chain, including in the pre/post-antiviral treatment states. Ultrasound elastography techniques are emerging as key methods in the assessment of liver diseases, with a number of advantages such as their rapid, noninvasive, and cost-effective characters. The present paper critically reviews the performance of vibration-controlled transient elastography (VCTE) in the assessment of HCV patients. VCTE measures liver stiffness (LS) and the ultrasonic attenuation through the embedded controlled attenuation parameter (CAP), providing the clinician with a tool for assessing fibrosis, cirrhosis, and steatosis in a noninvasive manner. Moreover, standardized LS values enable proper staging of the underlying fibrosis, leading to an accurate identification of a subset of HCV patients that present a high risk for complications. In addition, VCTE is a valuable technique in evaluating liver fibrosis prior to HCV therapy. However, its applicability in monitoring fibrosis regression after HCV eradication is currently limited and further studies should focus on extending the boundaries of VCTE in this context. From a different perspective, VCTE may be effective in identifying clinically significant portal hypertension (CSPH). An emerging prospect of clinical significance that warrants further study is the identification of esophageal varices. Our opinion is that the advantages of VCTE currently outweigh those of other surveillance methods

    How to Identify Advanced Fibrosis in Adult Patients with Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH) Using Ultrasound Elastography—A Review of the Literature and Proposed Multistep Approach

    No full text
    Non-alcoholic fatty liver disease (NAFLD), and its progressive form, non-alcoholic steatohepatitis (NASH), represent, nowadays, real challenges for the healthcare system. Liver fibrosis is the most important prognostic factor for NAFLD, and advanced fibrosis is associated with higher liver-related mortality rates. Therefore, the key issues in NAFLD are the differentiation of NASH from simple steatosis and identification of advanced hepatic fibrosis. We critically reviewed the ultrasound (US) elastography techniques for the quantitative characterization of fibrosis, steatosis, and inflammation in NAFLD and NASH, with a specific focus on how to differentiate advanced fibrosis in adult patients. Vibration-controlled transient elastography (VCTE) is still the most utilized and validated elastography method for liver fibrosis assessment. The recently developed point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) techniques that use multiparametric approaches could bring essential improvements to diagnosis and risk stratification

    Performance of Ultrasound Techniques and the Potential of Artificial Intelligence in the Evaluation of Hepatocellular Carcinoma and Non-Alcoholic Fatty Liver Disease

    No full text
    Global statistics show an increasing percentage of patients that develop non-alcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma (HCC), even in the absence of cirrhosis. In the present review, we analyzed the diagnostic performance of ultrasonography (US) in the non-invasive evaluation of NAFLD and NAFLD-related HCC, as well as possibilities of optimizing US diagnosis with the help of artificial intelligence (AI) assistance. To date, US is the first-line examination recommended in the screening of patients with clinical suspicion of NAFLD, as it is readily available and leads to a better disease-specific surveillance. However, the conventional US presents limitations that significantly hamper its applicability in quantifying NAFLD and accurately characterizing a given focal liver lesion (FLL). Ultrasound contrast agents (UCAs) are an essential add-on to the conventional B-mode US and to the Doppler US that further empower this method, allowing the evaluation of the enhancement properties and the vascular architecture of FLLs, in comparison to the background parenchyma. The current paper also explores the new universe of AI and the various implications of deep learning algorithms in the evaluation of NAFLD and NAFLD-related HCC through US methods, concluding that it could potentially be a game changer for patient care

    Fractal Analysis of Elastographic Images for Automatic Detection of Diffuse Diseases of Salivary Glands: Preliminary Results

    Get PDF
    The geometry of some medical images of tissues, obtained by elastography and ultrasonography, is characterized in terms of complexity parameters such as the fractal dimension (FD). It is well known that in any image there are very subtle details that are not easily detectable by the human eye. However, in many cases like medical imaging diagnosis, these details are very important since they might contain some hidden information about the possible existence of certain pathological lesions like tissue degeneration, inflammation, or tumors. Therefore, an automatic method of analysis could be an expedient tool for physicians to give a faultless diagnosis. The fractal analysis is of great importance in relation to a quantitative evaluation of “real-time” elastography, a procedure considered to be operator dependent in the current clinical practice. Mathematical analysis reveals significant discrepancies among normal and pathological image patterns. The main objective of our work is to demonstrate the clinical utility of this procedure on an ultrasound image corresponding to a submandibular diffuse pathology
    corecore