3,016 research outputs found

    Comparisons of Hyv\"arinen and pairwise estimators in two simple linear time series models

    Full text link
    The aim of this paper is to compare numerically the performance of two estimators based on Hyv\"arinen's local homogeneous scoring rule with that of the full and the pairwise maximum likelihood estimators. In particular, two different model settings, for which both full and pairwise maximum likelihood estimators can be obtained, have been considered: the first order autoregressive model (AR(1)) and the moving average model (MA(1)). Simulation studies highlight very different behaviours for the Hyv\"arinen scoring rule estimators relative to the pairwise likelihood estimators in these two settings.Comment: 14 pages, 2 figure

    Targeting Brutons Tyrosine Kinase in Chronic Lymphocytic Leukemia at the Crossroad between Intrinsic and Extrinsic Pro-survival Signals

    Get PDF
    Chemo immunotherapies for chronic lymphocytic leukemia (CLL) showed a positive impact on clinical outcome, but many patients relapsed or become refractory to the available treatments. The main goal of the researchers in CLL is the identification of specific targets in order to develop new therapeutic strategies to cure the disease. The B cell receptor-signalling pathway is necessary for survival of malignant B cells and its related molecules recently become new targets for therapy. Moreover, leukemic microenvironment delivers survival signals to neoplastic cells also overcoming the apoptotic effect induced by traditional drugs. In this context, the investigation of Bruton\u2019s tyrosine kinase (Btk) is useful in: i) dissecting CLL pathogenesis; ii) finding new therapeutic approaches striking simultaneously intrinsic as well as extrinsic pro-survival signals in CLL. This paper will review these main topics

    Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels:the role of poly(acrylic acid)

    Full text link
    Hypothesis: The peculiar swelling behaviour of poly(N-isopropylacrylamide) (PNIPAM)-based responsive microgels provides the possibility to tune both softness and volume fraction with temperature, making these systems of great interest for technological applications and theoretical implications. Their intriguing phase diagram can be even more complex if poly(acrylic acid) (PAAc) is interpenetrated within PNIPAM network to form Interpenetrating Polymer Network (IPN) microgels that exhibit an additional pH-sensitivity. The effect of the PAAc/PNIPAM polymeric ratio on both swelling capability and dynamics is still matter of investigation. Experiments: Here we investigate the role of PAAc in the behaviour of IPN microgels across the volume phase transition through dynamic light scattering (DLS), transmission electron microscopy (TEM) and electrophoretic measurements as a function of microgel concentration and pH. Findings: Our results highlight that aggregation is favored at increasing weight concentration, PAAc content and pH and that a crossover PAAc content C*_{PAAc} exists above which the ionic charges on the microgel become relevant. Moreover we show that the softness of IPN microgels can be tuned ad hoc by changing the PAAc/PNIPAM ratio. These findings provide new insights into the possibility to control experimentally aggregation properties, charge and softness of IPN microgels by varying PAAc content.Comment: preprint versio

    Molecular mechanisms driving the microgels behaviour: a Raman spectroscopy and Dynamic Light Scattering study

    Full text link
    Responsive microgels based on poly(N-isopropylacrylamide) (PNIPAM) exhibit peculiar behaviours due to the competition between the hydrophilic and hydrophobic interactions of the constituent networks. The interpenetration of poly-acrilic acid (PAAc), a pH-sensitive polymer, within the PNIPAM network, to form Interpenetrated Polymer Network (IPN) microgels, affects this delicate balance and the typical Volume-Phase Transition (VPT) leading to complex behaviours whose molecular nature is still completely unexplored. Here we investigate the molecular mechanism driving the VPT and its influence on particle aggregation for PNIPAM/PAAc IPN microgels by the joint use of Dynamic Light Scattering and Raman Spectroscopy. Our results highlight that PNIPAM hydrophobicity is enhanced by the interpenetration of PAAc promoting interparticle interactions, a crossover concentration is found above which aggregation phenomena become relevant. Moreover we find that, at variance with PNIPAM, for IPN microgels a double-step molecular mechanisms occurs upon crossing the VPT, the first involving the coil-to-globule transition typical of PNIPAM and the latter associated to PAAc steric hindrance.Comment: preprint versio
    corecore