15 research outputs found
Probing singularities in quantum cosmology with curvature scalars
We provide further evidence that the canonical quantization of cosmological
models eliminates the classical Big Bang singularity, using the {\it
DeBroglie-Bohm} interpretation of quantum mechanics. The usual criterion for
absence of the Big Bang singularity in Friedmann-Robertson-Walker quantum
cosmological models is the non-vanishing of the expectation value of the scale
factor. We compute the `local expectation value' of the Ricci and Kretschmann
scalars, for some quantum FRW models. We show that they are finite for all
time. Since these scalars are elements of general scalar polynomials in the
metric and the Riemann tensor, this result indicates that, for the quantum
models treated here, the `local expectation value' of these general scalar
polynomials should be finite everywhere. Therefore, we have further evidence
that the quantization of the models treated here eliminates the classical Big
Bang singularity. PACS: 04.40.Nr, 04.60.Ds, 98.80.Qc.Comment: 9 pages, 6 figure
Explorando sistemas hamiltonianos II: pontos de equilĂbrio degenerados
Neste segundo artigo sobre sistemas hamiltonianos, apresentamos o mĂ©todo da explosĂŁo (blow-up) para a determinação da natureza de pontos fixos (pontos de equilĂbrio) degenerados. Aplicamos o mĂ©todo a dois modelos hamiltonianos com um e dois graus de liberdade, respectivamente. Primeiramente, analisamos um sistema formado por um pĂȘndulo simples submetido a um torque externo constante. Em seguida, consideramos um sistema formado por um pĂȘndulo duplo com segmentos de comprimentos e massas iguais, tambĂ©m submetidos a torques externos constantes e nĂŁo nulos. A presença de pontos de equilĂbrio degenerados nos casos dos pĂȘndulos simples e duplo ocorre para certos valores dos torques externos
Resonant structure of space-time of early universe
A new fully quantum method describing penetration of packet from internal
well outside with its tunneling through the barrier of arbitrary shape used in
problems of quantum cosmology, is presented. The method allows to determine
amplitudes of wave function, penetrability and reflection relatively the barrier (accuracy of the method: ), coefficient of penetration (i.e. probability of
the packet to penetrate from the internal well outside with its tunneling),
coefficient of oscillations (describing oscillating behavior of the packet
inside the internal well). Using the method, evolution of universe in the
closed Friedmann--Robertson--Walker model with quantization in presence of
positive cosmological constant, radiation and component of generalize Chaplygin
gas is studied. It is established (for the first time): (1) oscillating
dependence of the penetrability on localization of start of the packet; (2)
presence of resonant values of energy of radiation , at which the
coefficient of penetration increases strongly. From analysis of these results
it follows: (1) necessity to introduce initial condition into both
non-stationary, and stationary quantum models; (2) presence of some definite
values for the scale factor , where start of expansion of universe is the
most probable; (3) during expansion of universe in the initial stage its radius
is changed not continuously, but passes consequently through definite discrete
values and tends to continuous spectrum in latter time.Comment: 18 pages, 14 figures, 4 table