2 research outputs found

    Ferromagnetically correlated clusters in semi-metallic Ru2NbAl Heusler alloy

    Get PDF
    In this work, we report the structural, magnetic and electrical and thermal transport properties of the Heusler-type alloy Ru2NbAl. From the detailed analysis of magnetization data, we infer the presence of superparamagnetically interacting clusters with a Pauli paramagnetic background, while short-range ferromagnetic interaction is developed among the clusters below 5 K. The presence of this ferromagnetic interaction is confirmed through heat capacity measurements. The relatively small value of electronic contribution to specific heat, gamma (~2.7 mJ/mol-K2), as well as the linear nature of temperature dependence of Seebeck coefficient indicate a semi-metallic ground state with a pseudo-gap that is also supported by our electronic structure calculations. The activated nature of resistivity is reflected in the observed negative temperature coefficient and has its origin in the charge carrier localization due to antisite defects, inferred from magnetic measurements as well as structural analysis. Although the absolute value of thermoelectric figure of merit is rather low (ZT = 5.2*10-3) in Ru2NbAl, it is the largest among all the reported non-doped full Heusler alloys.Comment: 25 pages, 14 figure

    Superparamagnetic and metal-like Ru2TiGe: a propitious thermoelectric material

    Full text link
    We report a study of structural, magnetic, heat capacity and thermoelectric properties of a Rubased Heusler alloy, Ru2TiGe. The magnetic measurements reveal that at higher temperatures, diamagnetic and Pauli paramagnetic contributions dominate the magnetic behaviour whereas, at lower temperatures (T<= 20 K), superparamagnetic interaction among clusters is observed. Effect of such magnetic defects is also evident in the electrical resistivity behaviour at lower temperatures. Though the temperature dependence of resistivity exhibits a metal-like nature, the large value of Seebeck coefficient leads to an appreciable power factor of the order of 1 mW/mK2 at 300 K. Large power factor as well as low thermal conductivity results in a value of ZT = 0.025 at 390 K for Ru2TiGe that is orders of magnitude higher than that of the other pure Heusler alloys and point towards its high potential for practical thermoelectric applications
    corecore