13 research outputs found

    Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations

    Full text link
    Based on a previously introduced downscaling data assimilation algorithm, which employs a nudging term to synchronize the coarse mesh spatial scales, we construct a determining map for recovering the full trajectories from their corresponding coarse mesh spatial trajectories, and investigate its properties. This map is then used to develop a downscaling data assimilation scheme for statistical solutions of the two-dimensional Navier-Stokes equations, where the coarse mesh spatial statistics of the system is obtained from discrete spatial measurements. As a corollary, we deduce that statistical solutions for the Navier-Stokes equations are determined by their coarse mesh spatial distributions. Notably, we present our results in the context of the Navier-Stokes equations; however, the tools are general enough to be implemented for other dissipative evolution equations

    Uniform in time error estimates for fully discrete numerical schemes of a data assimilation algorithm

    Get PDF
    We consider fully discrete numerical schemes for a downscaling data assimilation algorithm aimed at approximating the velocity field of the 2D Navier-Stokes equations corresponding to given coarse mesh observational measurements. The time discretization is done by considering semi- and fully-implicit Euler schemes, and the spatial discretization is based on a spectral Galerkin method. The two fully discrete algorithms are shown to be unconditionally stable, with respect to the size of the time step, number of time steps and the number of Galerkin modes. Moreover, explicit, uniform in time error estimates between the fully discrete solution and the reference solution corresponding to the observational coarse mesh measurements are obtained, in both the L2L^2 and H1H^1 norms. Notably, the two-dimensional Navier-Stokes equations, subject to the no-slip Dirichlet or periodic boundary conditions, are used in this work as a paradigm. The complete analysis that is presented here can be extended to other two- and three-dimensional dissipative systems under the assumption of global existence and uniqueness

    Postprocessing Galerkin method applied to a data assimilation algorithm: a uniform in time error estimate

    No full text
    We apply the Postprocessing Galerkin method to a recently introduced continuous data assimilation (downscaling) algorithm for obtaining a numerical approximation of the solution of the two-dimensional Navier-Stokes equations corresponding to given measurements from a coarse spatial mesh. Under suitable conditions on the relaxation (nudging) parameter, the resolution of the coarse spatial mesh and the resolution of the numerical scheme, we obtain uniform in time estimates for the error between the numerical approximation given by the Postprocessing Galerkin method and the reference solution corresponding to the measurements. Our results are valid for a large class of interpolant operators, including low Fourier modes and local averages over finite volume elements. Notably, we use here the 2D Navier-Stokes equations as a paradigm, but our results apply equally to other evolution equations, such as the Boussinesq system of Benard convection and other oceanic and atmospheric circulation models
    corecore