34 research outputs found
Identification of putative dothistromin biosynthetic genes : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Molecular Biology at Massey University, Palmerston North, New Zealand
Dothistromin is a polyketide-derived mycotoxin produced by the Pinus pathogen Dothistroma pini, and is thought to be important in the development of the necrotic disease Dothistroma needle blight. Targeted disruption of dothistromin biosynthetic genes will allow the direct assessment of the role of the toxin in D. pint pathogenicity. Dothistromin displays structural and biochemical similarities to the aflatoxins (AF) and sterigmatocystin (ST) which are produced by various Aspergillus species. In our laboratory, knowledge from the well characterised ST/AF pathway is being used to isolate and characterise genes likely to be involved in dothistromin production. The D. pini lambda clone, λCGV1. was isolated from a D. pini genomic library by heterologous hybridisation with a fragment of the Aspergillus parasiticus ver 1 gene (Gillman, 1996). In this study, the complete nucleotide sequence of XCGV1 was determined. Analysis revealed that five genes are located within the 13.3 kb genomic region sequenced Three of these genes (dkr1, dox1 and dte1) display strong similarities to genes contained within the ST/AF biosynthetic gene clusters. The dtp1 gene, located between dox1 and dtp 1, shows similarities to transmembrane efflux pumps and is proposed to be a dothistromin toxin pump. The ddh1 gene, located upstream of dkr1, shows similarities to bacterial dehydrogenases. However, the ddh1 coding sequence contains a premature stop codon (encoding a product of 63 amino acids), indicating that the product may be non-functional. Expression analysis of each gene identified in this study confirmed that dkr1, dox1, dte1 and dtp1 are expressed. However, no obvious expression was detected for the ddh1 gene. Southern blot analysis confirmed the genomic clustering of the genes and indicated that a single copy of each gene was present in the D. pini genome. Due to the biogenetic relationship between dothistromin and ST/AF biosynthesis, and because genes identified in this study show similarities to genes involved in ST/AF production, it is thought that these genes are likely to be involved in dothistromin biosynthesis and constitute part of a dothistromin biosynthetic gene cluster
HBO1 is required for the maintenance of leukaemia stem cells.
Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings
A genome-wide analysis of carbon catabolite repression in Schizosaccharomyces pombe
Abstract Background Optimal glucose metabolism is central to the growth and development of cells. In microbial eukaryotes, carbon catabolite repression (CCR) mediates the preferential utilization of glucose, primarily by repressing alternate carbon source utilization. In fission yeast, CCR is mediated by transcriptional repressors Scr1 and the Tup/Ssn6 complex, with the Rst2 transcription factor important for activation of gluconeogenesis and sexual differentiation genes upon derepression. Through genetic and genome-wide methods, this study aimed to comprehensively characterize CCR in fission yeast by identifying the genes and biological processes that are regulated by Scr1, Tup/Ssn6 and Rst2, the core CCR machinery. Results The transcriptional response of fission yeast to glucose-sufficient or glucose-deficient growth conditions in wild type and CCR mutant cells was determined by RNA-seq and ChIP-seq. Scr1 was found to regulate genes involved in carbon metabolism, hexose uptake, gluconeogenesis and the TCA cycle. Surprisingly, a role for Scr1 in the suppression of sexual differentiation was also identified, as homothallic scr1 deletion mutants showed ectopic meiosis in carbon and nitrogen rich conditions. ChIP-seq characterised the targets of Tup/Ssn6 and Rst2 identifying regulatory roles within and independent of CCR. Finally, a subset of genes bound by all three factors was identified, implying that regulation of certain loci may be modulated in a competitive fashion between the Scr1, Tup/Ssn6 repressors and the Rst2 activator. Conclusions By identifying the genes directly and indirectly regulated by Scr1, Tup/Ssn6 and Rst2, this study comprehensively defined the gene regulatory networks of CCR in fission yeast and revealed the transcriptional complexities governing this system
Indole-Diterpene Gene Cluster from Aspergillus flavus
Aflatrem is a potent tremorgenic mycotoxin produced by the soil fungus Aspergillus flavus and is a member of a large structurally diverse group of secondary metabolites known as indole-diterpenes. By using degenerate primers for conserved domains of fungal geranylgeranyl diphosphate synthases, we cloned two genes, atmG and ggsA (an apparent pseudogene), from A. flavus. Adjacent to atmG are two other genes, atmC and atmM. These three genes have 64 to 70% amino acid sequence similarity and conserved synteny with a cluster of orthologous genes, paxG, paxC, and paxM, from Penicillium paxilli which are required for indole-diterpene biosynthesis. atmG, atmC, and atmM are coordinately expressed, with transcript levels dramatically increasing at the onset of aflatrem biosynthesis. A genomic copy of atmM can complement a paxM deletion mutant of P. paxilli, demonstrating that atmM is a functional homolog of paxM. Thus, atmG, atmC, and atmM are necessary, but not sufficient, for aflatrem biosynthesis by A. flavus. This provides the first genetic evidence for the biosynthetic pathway of aflatrem in A. flavus
Differential Expression of Aspergillus nidulans Ammonium Permease Genes Is Regulated by GATA Transcription Factor AreA
The movement of ammonium across biological membranes is mediated in both prokaryotes and eukaryotes by ammonium transport proteins (AMT/MEP) that constitute a family of related sequences. We have previously identified two ammonium permeases in Aspergillus nidulans, encoded by the meaA and mepA genes. Here we show that meaA is expressed in the presence of ammonium, consistent with the function of MeaA as the main ammonium transporter required for optimal growth on ammonium as a nitrogen source. In contrast, mepA, which encodes a high-affinity ammonium permease, is expressed only under nitrogen-limiting or starvation conditions. We have identified two additional AMT/MEP-like genes in A. nidulans, namely, mepB, which encodes a second high-affinity ammonium transporter expressed only in response to complete nitrogen starvation, and mepC, which is expressed at low levels under all nitrogen conditions. The MepC gene product is more divergent than the other A. nidulans AMT/MEP proteins and is not thought to significantly contribute to ammonium uptake under normal conditions. Remarkably, the expression of each AMT/MEP gene under all nitrogen conditions is regulated by the global nitrogen regulatory GATA factor AreA. Therefore, AreA is also active under nitrogen-sufficient conditions, along with its established role as a transcriptional activator in response to nitrogen limitation
Isolation and Characterization of Two Ammonium Permease Genes, meaA and mepA, from Aspergillus nidulans
Ammonium and the analogue methylammonium are taken into the cell by active transport systems which constitute a family of transmembrane proteins that have been identified in fungi, bacteria, plants, and animals. Two genes from Aspergillus nidulans, mepA and meaA, which encode ammonium transporters with different affinities have been characterized. The MepA transporter exhibits the highest affinity for methylammonium (K(m0), 44.3 μM); in comparison, the K(m) for MeaA is 3.04 mM. By use of targeted gene replacement strategies, meaA and mepA deletion mutants were created. Deletion of both meaA and mepA resulted in the inability of the strain to grow on ammonium concentrations of less than 10 mM. The single meaA deletion mutant exhibited reduced growth at the same concentrations, whereas the mepA deletion mutant displayed wild-type growth. Interestingly, multiple copies of mepA were found to complement the methylammonium resistance phenotype conferred by the deletion of meaA. The expression profiles for mepA and meaA differed; the mepA transcript was detected only in nitrogen-starved cultures, whereas meaA was expressed under both ammonium-sufficient and nitrogen starvation conditions. Together, these results indicate that MeaA constitutes the major ammonium transport activity and is required for the optimal growth of A. nidulans on ammonium as the sole nitrogen source and that MepA probably functions in scavenging low concentrations of ammonium under nitrogen starvation conditions
Dothistroma pini, a Forest Pathogen, Contains Homologs of Aflatoxin Biosynthetic Pathway Genes
Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatoxin and sterigmatocystin gene clusters with predicted activities of a ketoreductase (dotA), oxidase (dotB), major facilitator superfamily transporter (dotC), and thioesterase (dotD). A D. pini dotA mutant was made by targeted gene replacement and shown to be severely impaired in dothistromin production, confirming that dotA is involved in dothistromin biosynthesis. Accumulation of versicolorin A (a precursor of aflatoxin) by the dotA mutant confirms that the dotA gene product is involved in an aflatoxin-like biosynthetic pathway. Since toxin genes have been found to be clustered in fungi in every case analyzed so far, it is speculated that the four dot genes may comprise part of a dothistromin biosynthetic gene cluster. A fifth gene, ddhA, is not a homolog of aflatoxin genes and could be at one end of the dothistromin cluster. These genes will allow comparative biochemical and genetic studies of the aflatoxin and dothistromin biosynthetic pathways and may also lead to new ways to control Dothistroma needle blight