11 research outputs found
Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder
BACKGROUND: Genome-wide association studies have shown a pattern of rare copy number variations and single nucleotide polymorphisms in patients with common variable immunodeficiency disorder (CVID), which was recognizable by a support vector machine (SVM) algorithm. However, rare monogenic causes of CVID might lack such a genetic fingerprint. OBJECTIVE: We sought to identify a unique monogenic cause of familial immunodeficiency and evaluate the use of SVM to identify patients with possible monogenic disorders. METHODS: A family with multiple members with a diagnosis of CVID was screened by using whole-exome sequencing. The proband and other subjects with mutations associated with CVID-like phenotypes were screened through the SVM algorithm from our recent CVID genome-wide association study. RT-PCR, protein immunoblots, and in vitro plasmablast differentiation assays were performed on patient and control EBV lymphoblastoids cell lines. RESULTS: Exome sequencing identified a novel heterozygous mutation in IRF2BP2 (c.1652G>A:p.[S551N]) in affected family members. Transduction of the mutant gene into control human B cells decreased production of plasmablasts in vitro, and IRF2BP2 transcripts and protein expression were increased in proband versus control EBV-immortalized lymphoblastoid cell lines. The SVM algorithm categorized the proband and subjects with other immunodeficiency-associated gene variants in TACI, BAFFR, ICOS, CD21, LRBA, and CD27 as genetically dissimilar from polygenic CVID. CONCLUSION: A novel IRFBP2 mutation was identified in a family with autosomal dominant CVID. Transduction experiments suggest that the mutant protein has an effect on B-cell differentiation and is likely a monogenic cause of the family's CVID phenotype. Successful grouping by the SVM algorithm suggests that our family and other subjects with rare immunodeficiency disorders cluster separately and lack the genetic pattern present in polygenic CVID cases
Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder
BACKGROUND: Genome-wide association studies have shown a pattern of rare copy number variations and single nucleotide polymorphisms in patients with common variable immunodeficiency disorder (CVID), which was recognizable by a support vector machine (SVM) algorithm. However, rare monogenic causes of CVID might lack such a genetic fingerprint. OBJECTIVE: We sought to identify a unique monogenic cause of familial immunodeficiency and evaluate the use of SVM to identify patients with possible monogenic disorders. METHODS: A family with multiple members with a diagnosis of CVID was screened by using whole-exome sequencing. The proband and other subjects with mutations associated with CVID-like phenotypes were screened through the SVM algorithm from our recent CVID genome-wide association study. RT-PCR, protein immunoblots, and in vitro plasmablast differentiation assays were performed on patient and control EBV lymphoblastoids cell lines. RESULTS: Exome sequencing identified a novel heterozygous mutation in IRF2BP2 (c.1652G>A:p.[S551N]) in affected family members. Transduction of the mutant gene into control human B cells decreased production of plasmablasts in vitro, and IRF2BP2 transcripts and protein expression were increased in proband versus control EBV-immortalized lymphoblastoid cell lines. The SVM algorithm categorized the proband and subjects with other immunodeficiency-associated gene variants in TACI, BAFFR, ICOS, CD21, LRBA, and CD27 as genetically dissimilar from polygenic CVID. CONCLUSION: A novel IRFBP2 mutation was identified in a family with autosomal dominant CVID. Transduction experiments suggest that the mutant protein has an effect on B-cell differentiation and is likely a monogenic cause of the family's CVID phenotype. Successful grouping by the SVM algorithm suggests that our family and other subjects with rare immunodeficiency disorders cluster separately and lack the genetic pattern present in polygenic CVID cases
IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function
Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function
Comèl-Netherton syndrome defined as primary immunodeficiency
BACKGROUND: Mutations in SPINK5, encoding the serine protease inhibitor LEKTI, cause Comèl-Netherton syndrome, an autosomal-recessive disease characterized by congenital ichthyosis, bamboo hair, and atopic diathesis. Despite increased frequency of infections, the immunocompetence of Comèl-Netherton syndrome patients has not been extensively investigated. OBJECTIVE: To define Comèl-Netherton syndrome as a primary immunodeficiency and to explore the benefit of IVIG replacement therapy. METHODS: We enrolled nine patients with Comèl-Netherton syndrome, sequenced SPINK5, and analyzed LEKTI expression by immunohistochemistry. Immune function was assessed by measuring cognate immunity, serum cytokine-levels and natural killer cell cytotoxicity. RESULTS: All patients presented with recurrent skin infections caused predominantly by Staphylococcus aureus. All but one reported recurrent respiratory tract infections; 78% had sepsis and/or pneumonia; 67% suffered from recurrent gastroenteritis and failure to thrive. Mutations in SPINK5 – including six novel mutations- were identified in eight patients. LEKTI expression was decreased or absent in all patients. Immunologic evaluation revealed reduced memory B cells and defective responses to vaccination with Pneumovax(®) and bacteriophage phiX174, characterized by impaired antibody amplification and class-switching. Immune dysregulation was suggested by a skewed TH1-phenotype and elevated proinflammatory cytokine levels, while serum concentrations of the chemokine RANTES and NK cell cytotoxicity were decreased. Treatment with intravenous immunoglobulin substitution resulted in remarkable clinical improvement and temporarily increased NK cell cytotoxicity. CONCLUSION: These data provide new insights into the immunopathology of Comèl-Netherton syndrome and demonstrate that this multisystem disorder, characterized by lack of LEKTI expression in epithelial cells, is complicated by cognate and innate immunodeficiency that responds favorably to IVIG therapy