8 research outputs found

    Phytoplankton assemblage of a solar saltern in Port Fouad, Egypt

    Get PDF
    The present study is the first investigation of the phytoplankton community inone of Egypt's saltworks. The phytoplankton composition and distribution infive ponds of increasing salinity were investigated in the solar saltern of Port Fouad.The phytoplankton community consisted of 42 species belonging to cyanobacteria(16), diatoms (12), dinoflagellates (11), Euglenophyceae (2) and Chlorophyceae (1).The number of species decreased significantly and rapidly with increasing salinity,varying between 33 species in the first pond (P1) and one species in the crystallizerpond (P5). Conversely, the total phytoplankton density, except that recordedin P1, increased significantly with rising salinity, fluctuating between 8.7 and56 × 105 individuals l-1 in P2 and P5 respectively. In spiteof the local variations in climate and nutrient availability, the phytoplankton composition, density and spatialvariations along the salinity gradient were, in many respects, very similar towhat has been observed in other solar saltworks. The pond with the lowest salinity(P1 - -1) was characterized by a significant diversity andblooming of diatoms and dinoflagellates. Intermediate salinity ponds (P2 andP3) with salinity ∼ 112-180 g l-1 exhibited a decline in bothspecies richness and density, but the stenohaline blue green algae (Synechocystis salina) did flourish. The highly saline concentrating ponds andcrystallizers (P4 and P5) with salinity ∼ 223-340 g l-1 werecharacterized by few species, the disappearance of blue green algae and thethriving of the halotolerant green alga Dunaliella salina

    Cell free DNA as a biomarker in medicolegal assessment in burn patients

    No full text
    Background: Burn victims have higher levels of cell free DNA (cfDNA), which allows its use as a direct indicator of cellular damage and burn vitality. Aim: Determination of cfDNA levels in burn patients and their correlation with total body surface area burned percent (TBSA%). Subjects and methods: Burn cases were evaluated to determine the prevalence of age and sex variations, period of admission, TBSA%, and the etiology and manner of burns. The plasma cfDNA concentration was measured within 24 hours of the burn injury in 40 burn cases and 20 control subjects. Results: The mean age of the cases was 34.38 years (median 33 years). Most patients were males (62.5%). Burning by flame or scalding represented 50% of the cases. Accidental burns were the most predominant. The mean of admission periods was 36.55 days while the mean value of TBSA% of the cases was 16.68%. There was a statistically significant difference in cfDNA values between cases and control subjects (p = 0.001). A positive correlation was found between cfDNA levels and TBSA% (r = 0.7; p < 0.001). Conclusion and recommendations: Levels of cfDNA were significantly different between burn cases and controls

    Effect of design and operational parameters on nutrients and heavy metal removal in pilot floating treatment wetlands with Eichhornia Crassipes treating polluted lake water

    No full text
    Summarization: Though having an economic and ecological impact on Marriott Lake management in Egypt, water hyacinth (Eichhornia crassipes) is an aquatic floating macrophyte with a known phytoremediation potential. In order to assess its remediation potential, pilot floating treatment wetlands (FTWs) with E. crassipes were built in duplicates to evaluate the removal of nutrients and heavy metals from the polluted lake water. The experimental design included units with different water depths (15, 25, and 35 cm; D15, D25, and D35, respectively) and plant coverage (90, 70, 50, and 0%; P90, P70, P50, and P0, respectively). The pilot FTWs were monitored over a 7-day operation cycle to identify the optimum combination of design (plant coverage, water depth) and operation (hydraulic retention time; HRT) parameters needed for maximum BOD5, TN, NH4-N, and TP removal. NH4-N removal reached 97.4% in the D25P50 unit after 3 days, BOD5 75% in the D15P90 after 3 days, TN 82% in the D25P70 after 4 days, and TP 84.2% in the D35P70 after 4 days. The open-water evaporation rate was higher than the evapotranspiration rate in the planted units, probably due to the warm climate of the study area. Metals were also sufficiently removed through bioaccumulation in plant tissues in the order of Fe > Pb > Cu > Ni (62.5%, 88.9%, 81.7%, and 80.4% for D25P50, D25P70, D25P50, and D25P90, respectively), while most of the assimilated metal mass was translocated to the plant roots. The biochemical composition of the plant tissue was significantly different between the shoot and root parts. Overall, the FTW with 70% E. crassipes coverage, 25-cm water depth, and an HRT of 3–5 days was identified as the optimum design for effective remediation of the polluted Marriott Lake in Egypt.Presented on: Environmental Science and Pollution Researc

    Naturally Available Flavonoid Aglycones as Potential Antiviral Drug Candidates against SARS-CoV-2

    No full text
    Flavonoids are important secondary plant metabolites that have been studied for a long time for their therapeutic potential in inflammatory diseases because of their cytokine-modulatory effects. Five flavonoid aglycones were isolated and identified from the hydrolyzed aqueous methanol extracts of Anastatica hierochuntica L., Citrus reticulata Blanco, and Kickxia aegyptiaca (L.) Nabelek. They were identified as taxifolin (1), pectolinarigenin (2), tangeretin (3), gardenin B (4), and hispidulin (5). These structures were elucidated based on chromatographic and spectral analysis. In this study, molecular docking studies were carried out for the isolated and identified compounds against SARS-CoV-2 main protease (Mpro) compared to the co-crystallized inhibitor of SARS-CoV-2 Mpro (α-ketoamide inhibitor (KI), IC50 = 66.72 µg/mL) as a reference standard. Moreover, in vitro screening against SARS-CoV-2 was evaluated. Compounds 2 and 3 showed the highest virus inhibition with IC50 12.4 and 2.5 µg/mL, respectively. Our findings recommend further advanced in vitro and in vivo studies of the examined isolated flavonoids, especially pectolinarigenin (2), tangeretin (3), and gardenin B (4), either alone or in combination with each other to identify a promising lead to target SARS-CoV-2 effectively. This is the first report of the activity of these compounds against SARS-CoV-2

    Immunogenicity and Safety of an Inactivated SARS-CoV-2 Vaccine: Preclinical Studies

    No full text
    Since the emergence of SARS-CoV-2 at the end of 2019, 64 candidate vaccines are in clinical development and 173 are in the pre-clinical phase. Five types of vaccines are currently approved for emergency use in many countries (Inactivated, Sinopharm; Viral-vector, Astrazeneca, and Gamaleya Research Institute; mRNA, Moderna, and BioNTech/Pfizer). The main challenge in this pandemic was the availability to produce an effective vaccine to be distributed to the world’s population in a short time. Herein, we developed a whole virus NRC-VACC-01 inactivated candidate SARS-CoV-2 vaccine and tested its safety and immunogenicity in laboratory animals. In the preclinical studies, we used four experimental animals (mice, rats, guinea pigs, and hamsters). Antibodies were detected as of week three post vaccination and continued up to week ten in the four experimental models. Safety evaluation of NRC-VACC-01 inactivated candidate vaccine in rats revealed that the vaccine was highly tolerable. By studying the effect of booster dose in the immunological profile of vaccinated mice, we observed an increase in neutralizing antibody titers after the booster shot, thus a booster dose was highly recommended after week three or four. Challenge infection of hamsters showed that the vaccinated group had lower morbidity and shedding than the control group. A phase I clinical trial will be performed to assess safety in human subjects

    Immunogenicity and Safety of an Inactivated SARS-CoV-2 Vaccine: Preclinical Studies

    No full text
    Since the emergence of SARS-CoV-2 at the end of 2019, 64 candidate vaccines are in clinical development and 173 are in the pre-clinical phase. Five types of vaccines are currently approved for emergency use in many countries (Inactivated, Sinopharm; Viral-vector, Astrazeneca, and Gamaleya Research Institute; mRNA, Moderna, and BioNTech/Pfizer). The main challenge in this pandemic was the availability to produce an effective vaccine to be distributed to the world’s population in a short time. Herein, we developed a whole virus NRC-VACC-01 inactivated candidate SARS-CoV-2 vaccine and tested its safety and immunogenicity in laboratory animals. In the preclinical studies, we used four experimental animals (mice, rats, guinea pigs, and hamsters). Antibodies were detected as of week three post vaccination and continued up to week ten in the four experimental models. Safety evaluation of NRC-VACC-01 inactivated candidate vaccine in rats revealed that the vaccine was highly tolerable. By studying the effect of booster dose in the immunological profile of vaccinated mice, we observed an increase in neutralizing antibody titers after the booster shot, thus a booster dose was highly recommended after week three or four. Challenge infection of hamsters showed that the vaccinated group had lower morbidity and shedding than the control group. A phase I clinical trial will be performed to assess safety in human subjects
    corecore