672 research outputs found

    Universality and the five-dimensional Ising model

    Full text link
    We solve the long-standing discrepancy between Monte Carlo results and the renormalization prediction for the Binder cumulant of the five-dimensional Ising model. Our conclusions are based on accurate Monte Carlo data for systems with linear sizes up to L=22. A detailed analysis of the corrections to scaling allows the extrapolation of these results to L=\infinity. Our determination of the critical point, K_c=0.1139150 (4), is more than an order of magnitude more accurate than previous estimates.Comment: 6 pages LaTeX, 1 PostScript figure. Uses cite.sty (included) and epsf.sty. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm

    Thermodynamics predicts how confinement modifies hard-sphere dynamics

    Full text link
    We study how confining the equilibrium hard-sphere fluid to restrictive one- and two-dimensional channels with smooth interacting walls modifies its structure, dynamics, and entropy using molecular dynamics and transition-matrix Monte Carlo simulations. Although confinement strongly affects local structuring, the relationships between self-diffusivity, excess entropy, and average fluid density are, to an excellent approximation, independent of channel width or particle-wall interactions. Thus, thermodynamics can be used to predict how confinement impacts dynamics.Comment: 4 pages, 4 figure

    Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties

    Get PDF
    Abstract not availableTushar Kumeria, Htwe Mon, Moom Sinn Aw, Karan Gulati, Abel Santos, Hans J. Griesser, Dusan Losi

    Feasibility of Using Cranial Electrotherapy Stimulation for Pain in Persons with Parkinson's Disease

    Get PDF
    Objectives. To assess the feasibility of treating musculoskeletal pain in the lower back and/or lower extremities in persons with Parkinson's disease (PD) with cranial electrotherapy stimulation (CES). Design. Randomized, controlled, double-blind trial. Setting. Veterans Affairs Medical Center, Community. Participants. Nineteen persons with PD and pain in the lower back and/or lower extremities. Thirteen provided daily pain rating data. Intervention. Of the thirteen participants who provided daily pain data, 6 were randomly provided with active CES devices and 7 with sham devices to use at home 40 minutes per day for six weeks. They recorded their pain ratings on a 0-to-10 scale immediately before and after each session. Main Outcome Measure. Average daily change in pain intensity. Results. Persons receiving active CES had, on average, a 1.14-point decrease in pain compared with a 0.23-point decrease for those receiving sham CES (Wilcoxon Z = −2.20, P = .028). Conclusion. Use of CES at home by persons with PD is feasible and may be somewhat helpful in decreasing pain. A larger study is needed to determine the characteristics of persons who may experience meaningful pain reduction with CES. Guidelines for future studies are provided

    Binomial level densities

    Full text link
    It is shown that nuclear level densities in a finite space are described by a continuous binomial function, determined by the first three moments of the Hamiltonian, and the dimensionality of the underlying vector space. Experimental values for 55^{55}Mn, 56^{56}Fe, and 60^{60}Ni are very well reproduced by the binomial form, which turns out to be almost perfectly approximated by Bethe's formula with backshift. A proof is given that binomial densities reproduce the low moments of Hamiltonians of any rank: A strong form of the famous central limit result of Mon and French. Conditions under which the proof may be extended to the full spectrum are examined.Comment: 4 pages 2 figures Second version (previous not totally superseeded

    Equilibrium crystal shapes in the Potts model

    Full text link
    The three-dimensional qq-state Potts model, forced into coexistence by fixing the density of one state, is studied for q=2q=2, 3, 4, and 6. As a function of temperature and number of states, we studied the resulting equilibrium droplet shapes. A theoretical discussion is given of the interface properties at large values of qq. We found a roughening transition for each of the numbers of states we studied, at temperatures that decrease with increasing qq, but increase when measured as a fraction of the melting temperature. We also found equilibrium shapes closely approaching a sphere near the melting point, even though the three-dimensional Potts model with three or more states does not have a phase transition with a diverging length scale at the melting point.Comment: 6 pages, 3 figures, submitted to PR

    Properties of Interfaces in the two and three dimensional Ising Model

    Full text link
    To investigate order-order interfaces, we perform multimagnetical Monte Carlo simulations of the 2D2D and 3D3D Ising model. Following Binder we extract the interfacial free energy from the infinite volume limit of the magnetic probability density. Stringent tests of the numerical methods are performed by reproducing with high precision exact 2D2D results. In the physically more interesting 3D3D case we estimate the amplitude F0sF^s_0 of the critical interfacial tension Fs=F0stμF^s = F^s_0 t^\mu to be F0s=1.52±0.05F^s_0 = 1.52 \pm 0.05. This result is in good agreement with a previous MC calculation by Mon, as well as with experimental results for related amplitude ratios. In addition, we study in some details the shape of the magnetic probability density for temperatures below the Curie point.Comment: 25 pages; sorry no figures include

    Monte Carlo Renormalization Group Analysis of Lattice ϕ4\phi^4 Model in D=3,4D=3,4

    Full text link
    We present a simple, sophisticated method to capture renormalization group flow in Monte Carlo simulation, which provides important information of critical phenomena. We applied the method to D=3,4D=3,4 lattice ϕ4\phi^4 model and obtained renormalization flow diagram which well reproduces theoretically predicted behavior of continuum ϕ4\phi^4 model. We also show that the method can be easily applied to much more complicated models, such as frustrated spin models.Comment: 13 pages, revtex, 7 figures. v1:Submitted to PRE. v2:considerably reduced redundancy of presentation. v3:final version to appear in Phys.Rev.

    Logarithmic corrections in the two-dimensional Ising model in a random surface field

    Full text link
    In the two-dimensional Ising model weak random surface field is predicted to be a marginally irrelevant perturbation at the critical point. We study this question by extensive Monte Carlo simulations for various strength of disorder. The calculated effective (temperature or size dependent) critical exponents fit with the field-theoretical results and can be interpreted in terms of the predicted logarithmic corrections to the pure system's critical behaviour.Comment: 10 pages, 4 figures, extended version with one new sectio

    Nonmonotonical crossover of the effective susceptibility exponent

    Full text link
    We have numerically determined the behavior of the magnetic susceptibility upon approach of the critical point in two-dimensional spin systems with an interaction range that was varied over nearly two orders of magnitude. The full crossover from classical to Ising-like critical behavior, spanning several decades in the reduced temperature, could be observed. Our results convincingly show that the effective susceptibility exponent gamma_eff changes nonmonotonically from its classical to its Ising value when approaching the critical point in the ordered phase. In the disordered phase the behavior is monotonic. Furthermore the hypothesis that the crossover function is universal is supported.Comment: 4 pages RevTeX 3.0/3.1, 5 Encapsulated PostScript figures. Uses epsf.sty. Accepted for publication in Physical Review Letters. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm
    corecore