349 research outputs found

    Duality relations and exotic orders in electronic ladder systems

    Full text link
    We discuss duality relations in correlated electronic ladder systems to clarify mutual relations between various conventional and unconventional phases. For the generalized two-leg Hubbard ladder, we find two exact duality relations, and also one asymptotic relation which holds in the low-energy regime. These duality relations show that unconventional (exotic) density-wave orders such as staggered flux or circulating spin-current are directly mapped to conventional density-wave orders, which establishes the appearance of various exotic states with time-reversal and/or spin symmetry breaking. We also study duality relations in the SO(5) symmetry that was proposed to unify antiferromagnetism and d-wave superconductivity. We show that the same SO(5) symmetry also unifies circulating spin current order and s-wave superconductivity.Comment: 9 pages, 2 figures; Proceedings of SPQS2004 (Sendai

    Quantum melting of incommensurate domain walls in two dimensions

    Full text link
    Quantum fluctuations of periodic domain-wall arrays in two-dimensional incommensurate states at zero temperature are investigated using the elastic theory in the vicinity of the commensurate-incommensurate transition point. Both stripe and honeycomb structures of domain walls with short-range interactions are considered. It is revealed that the stripes melt and become a stripe liquid in a large-wall-spacing (low-density) region due to dislocations created by quantum fluctuations. This quantum melting transition is of second order and characterized by the three-dimensional XY universality class. Zero-point energies of the stripe and honeycomb structures are calculated. As a consequence of these results, phase diagrams of the domain-wall solid and liquid phases in adsorbed atoms on graphite are discussed for various domain-wall masses. Quantum melting of stripes in the presence of long-range interactions that fall off as power laws is also studied. These results are applied to incommensurate domain walls in two-dimensional adsorbed atoms on substrates and in doped antiferromagnets, e.g. cuprates and nickelates.Comment: 11 pages, 5 figure

    Magnetization plateaus as insulator-superfluid transitions in quantum spin systems

    Full text link
    We study the magnetization process in two-dimensional S=1/2 spin systems, to discuss the appearance of a plateau structure. The following three cases are considered: (1) the Heisenberg antiferromagnet and multiple-spin exchange model on the triangular lattice, (2) Shastry-Sutherland type lattice, [which is a possible model for SrCu2(BO3)2,] (3) 1/5-depleted lattice (for CaV4O9). We find in these systems that magnetization plateaus can appear owing to a transition from superfluid to a Mott insulator of magnetic excitations. The plateau states have CDW order of the excitations. The magnetizations of the plateaus depend on components of the magnetic excitations, range of the repulsive interaction, and the geometry of the lattice.Comment: 5 pages, RevTeX, 7 figures, note and reference adde

    Spin-Wave Theory of the Multiple-Spin Exchange Model on a Triangular Lattice in a Magnetic Field : 3-Sublattice Structures

    Full text link
    We study the spin wave in the S=1/2 multiple-spin exchange model on a triangular lattice in a magnetic field within the linear spin-wave theory. We take only two-, three- and four-spin exchange interactions into account and restrict ourselves to the region where a coplanar three-sublattice state is the mean-field ground state. We found that the Y-shape ground state survives quantum fluctuations and the phase transition to a phase with a 6-sublattice structure occurs with softening of the spin wave. We estimated the quantum corrections to the ground state sublattice magnetizations due to zero-point spin-wave fluctuations.Comment: 8 pages, 20 figure

    Possible chiral phase transition in two-dimensional solid 3^3He

    Full text link
    We study a spin system with two- and four-spin exchange interactions on the triangular lattice, which is a possible model for the nuclear magnetism of solid 3^3He layers. It is found that a novel spin structure with scalar chiral order appears if the four-spin interaction is dominant. Ground-state properties are studied using the spin-wave approximation. A phase transition concerning the scalar chirality occurs at a finite temperature, even though the dimensionality of the system is two and the interaction has isotropic spin symmetry. Critical properties of this transition are studied with Monte Carlo simulations in the classical limit.Comment: 4 pages, Revtex, 4 figures, to appear in Phys.Rev.Let

    Generalised Shastry-Sutherland Models in three and higher dimensions

    Full text link
    We construct Heisenberg anti-ferromagnetic models in arbitrary dimensions that have isotropic valence bond crystals (VBC) as their exact ground states. The d=2 model is the Shastry-Sutherland model. In the 3-d case we show that it is possible to have a lattice structure, analogous to that of SrCu_2(BO_3)_2, where the stronger bonds are associated with shorter bond lengths. A dimer mean field theory becomes exact at d -> infinity and a systematic 1/d expansion can be developed about it. We study the Neel-VBC transition at large d and find that the transition is first order in even but second order in odd dimensions.Comment: Published version; slightly expande

    Multi-Triplet Magnons in SrCu2_2(BO3_3)2_2 Studied by Thermal Conductivity Measurements in Magnetic Fields

    Full text link
    We have measured the thermal conductivity parallel to the a-axis of the Zn-free and 1% Zn-substituted SrCu2x_{2-x}Znx_x(BO3_3)2_2 in magnetic fields up to 14 T, in order to examine the thermal conductivity due to the multi-triplet magnons. It has been found that the thermal conductivity peak observed in the spin gap state is suppressed by the substitution of Zn for Cu in high magnetic fields above 6 T, while it is not changed in low magnetic fields below 6 T. The results suggest that the thermal conductivity peak in the spin-gap state of SrCu2_2(BO3_3)2_2 is composed of not only thermal conductivity due to phonons but also that due to the multi-triplet magnons in high fields above 6 T.Comment: 7 pages, 2 figure

    Magnetization plateau in a two-dimensional multiple-spin exchange model

    Full text link
    We study a multiple-spin exchange model on a triangular lattice, which is a possible model for low-density solid 3He films. Due to strong competitions between ferromagnetic three-spin exchange and antiferromagnetic four-spin one, the ground states are highly degenerate in the classical limit. At least 2^{L/2}-fold degeneracy exists on the L*L triangular lattice except for the SO(3) symmetry. In the magnetization process, we found a plateau at m/m_{sat}=1/2, in which the ground state is "uuud state" (a collinear state with four sublattices). The 1/2-plateau appears due to the strong four-spin exchange interaction. This plateau survives against both quantum and thermal fluctuations. Under a magnetic field which realizes the "uuud" ordered state, a phase transition occurs at a finite temperature. We predict that low-density solid 3He thin films may show the 1/2-plateau in the magnetization process. Experimental observation of the plateau will verify strength of the four-spin exchange. It is also discussed that this magnetization plateau can be understood as an insulating-conducting transition in a particle picture.Comment: 10 pages, RevTeX, 12 figures, added a reference and corrected typos, to be published in Phys.Rev.B (01 APR 99

    Magnetic Phase Diagram of Spin-1/2 Two-Leg Ladder with Four-Spin Ring Exchange

    Full text link
    We study the spin-1/2 two-leg Heisenberg ladder with four-spin ring exchanges under a magnetic field. We introduce an exact duality transformation which is an extension of the spin-chirality duality developed previously and yields a new self-dual surface in the parameter space. We then determine the magnetic phase diagram using the numerical approaches of the density-matrix renormalization-group and exact diagonalization methods. We demonstrate the appearance of a magnetization plateau and the Tomonaga-Luttinger liquid with dominant vector-chirality quasi-long-range order for a wide parameter regime of strong ring exchange. A "nematic" phase, in which magnons form bound pairs and the magnon-pairing correlation functions dominate, is also identified.Comment: 18pages, 7 figure
    corecore