Abstract

We study the spin-1/2 two-leg Heisenberg ladder with four-spin ring exchanges under a magnetic field. We introduce an exact duality transformation which is an extension of the spin-chirality duality developed previously and yields a new self-dual surface in the parameter space. We then determine the magnetic phase diagram using the numerical approaches of the density-matrix renormalization-group and exact diagonalization methods. We demonstrate the appearance of a magnetization plateau and the Tomonaga-Luttinger liquid with dominant vector-chirality quasi-long-range order for a wide parameter regime of strong ring exchange. A "nematic" phase, in which magnons form bound pairs and the magnon-pairing correlation functions dominate, is also identified.Comment: 18pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 23/04/2021