474 research outputs found
A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: Implications for
Strong gravitational lensing provides an independent measurement of the
Hubble parameter (). One remaining systematic is a bias from the
additional mass due to a galaxy group at the lens redshift or along the
sightline. We quantify this bias for more than 20 strong lenses that have
well-sampled sightline mass distributions, focusing on the convergence
and shear . In 23% of these fields, a lens group contributes a 1%
convergence bias; in 57%, there is a similarly significant line-of-sight group.
For the nine time delay lens systems, is overestimated by 11%
on average when groups are ignored. In 67% of fields with total
0.01, line-of-sight groups contribute more convergence than
do lens groups, indicating that the lens group is not the only important mass.
Lens environment affects the ratio of four (quad) to two (double) image
systems; all seven quads have lens groups while only three of 10 doubles do,
and the highest convergences due to lens groups are in quads. We calibrate the
- relation: with a rms scatter of 0.34 dex.
Shear, which, unlike convergence, can be measured directly from lensed images,
can be a poor predictor of ; for 19% of our fields, is
. Thus, accurate cosmology using strong gravitational lenses
requires precise measurement and correction for all significant structures in
each lens field.Comment: 34 pages, 11 figures, accepted for publication in Ap
Evidence for non-stellar rest-frame near-IR emission associated with increased star formation in galaxies at
We explore the presence of non-stellar rest-frame near-IR () emission in galaxies at . Previous studies identified
this excess in relatively small samples and suggested that such non-stellar
emission, which could be linked to the polycyclic
aromatic hydrocarbons feature or hot dust emission, is associated with an
increased star formation rate (SFR). In this Letter, we confirm and quantify
the presence of an IR excess in a significant fraction of galaxies in the
3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and
without strong non-stellar near-IR emission, we find that galaxies with such
emission are predominantly star-forming galaxies. Moreover, star-forming
galaxies with an excess show increased mid- and far-IR and H emission
compared to other star-forming galaxies without. While galaxies with a near-IR
excess show a larger fraction of individually detected X-ray active galactic
nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and
H profiles, shows that AGNs are unlikely to be the dominant source of
the excess in the majority of galaxies. Our results suggest that non-stellar
near-IR emission is linked to increased SFRs and is ubiquitous among
star-forming galaxies. As such, the near-IR emission might be a powerful tool
to measure SFRs in the era of the James Webb Space Telescope.Comment: 6 pages, 5 figures, accepted for publication in ApJ
High Redshift Massive Quiescent Galaxies are as Flat as Star Forming Galaxies: The Flattening of Galaxies and the Correlation with Structural Properties in CANDELS/3D-HST
We investigate the median flattening of galaxies at in all five
CANDELS/3D-HST fields via the apparent axis ratio . We separate the sample
into bins of redshift, stellar-mass, s\'ersic index, size, and UVJ determined
star-forming state to discover the most important drivers of the median
(). Quiescent galaxies at are
rounder than those at lower masses, consistent with the hypothesis that they
have grown significantly through dry merging. The massive quiescent galaxies at
higher redshift become flatter, and are as flat as star forming massive
galaxies at , consistent with formation through direct
transformations or wet mergers. We find that in quiescent galaxies,
correlations with and , and are driven by the
evolution in the s\'ersic index (), consistent with the growing accumulation
of minor mergers at lower redshift. Interestingly, does not drive these
trends fully in star-forming galaxies. Instead, the strongest predictor of
in star-forming galaxies is the effective radius, where larger galaxies are
flatter. Our findings suggest that is tracing bulge-to-total ()
galaxy ratio which would explain why smaller/more massive star-forming galaxies
are rounder than their extended/less massive analogues, although it is unclear
why s\'ersic index correlates more weakly with flattening for star forming
galaxies than for quiescent galaxies.Comment: 13 pages, 11 figures, accepted to Ap
The Evolution of the Fractions of Quiescent and Star-forming Galaxies as a Function of Stellar Mass Since z=3: Increasing Importance of Massive, Dusty Star-forming Galaxies in the Early Universe
Using the UltraVISTA DR1 and 3D-HST catalogs, we construct a
stellar-mass-complete sample, unique for its combination of surveyed volume and
depth, to study the evolution of the fractions of quiescent galaxies,
moderately unobscured star-forming galaxies, and dusty star-forming galaxies as
a function of stellar mass over the redshift interval . We
show that the role of dusty star-forming galaxies within the overall galaxy
population becomes more important with increasing stellar mass, and grows
rapidly with increasing redshift. Specifically, dusty star-forming galaxies
dominate the galaxy population with at . The ratio of dusty and non-dusty star-forming galaxies as
a function of stellar mass changes little with redshift. Dusty star-forming
galaxies dominate the star-forming population at , being a factor of 3-5 more common,
while unobscured star-forming galaxies dominate at . At , red
galaxies dominate the galaxy population at all redshift , either because
they are quiescent (at late times) or dusty star-forming (in the early
universe).Comment: 7 pages, 4 figures, 1 table. Accepted by Astrophysical Journal
Letters after minor revisio
The H-alpha Luminosity Function and Star Formation Rate Volume Density at z=0.8 from the NEWFIRM H-alpha Survey
[Abridged] We present new measurements of the H-alpha luminosity function
(LF) and SFR volume density for galaxies at z~0.8. Our analysis is based on
1.18m narrowband data from the NEWFIRM H-alpha Survey, a comprehensive
program designed to capture deep samples of intermediate redshift emission-line
galaxies using narrowband imaging in the near-infrared. The combination of
depth ( erg s cm in H-alpha at
3) and areal coverage (0.82 deg) complements other recent H-alpha
studies at similar redshifts, and enables us to minimize the impact of cosmic
variance and place robust constraints on the shape of the LF. The present
sample contains 818 NB118 excess objects, 394 of which are selected as H-alpha
emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess
objects. Empirical optical broadband color classification is used to sort the
remainder of the sample. A comparison of the LFs constructed for the four
individual fields reveals significant cosmic variance, emphasizing that
multiple, widely separated observations are required. The dust-corrected LF is
well-described by a Schechter function with L*=10^{43.00\pm0.52} ergs s^{-1},
\phi*=10^{-3.20\pm0.54} Mpc^{-3}, and \alpha=-1.6\pm0.19. We compare our
H-alpha LF and SFR density to those at z<1, and find a rise in the SFR density
\propto(1+z)^{3.4}, which we attribute to significant L* evolution. Our H-alpha
SFR density of 10^{-1.00\pm0.18} M_sun yr^{-1} Mpc^{-3} is consistent with UV
and [O II] measurements at z~1. We discuss how these results compare to other
H-alpha surveys at z~0.8, and find that the different methods used to determine
survey completeness can lead to inconsistent results. This suggests that future
surveys probing fainter luminosities are needed, and more rigorous methods of
estimating the completeness should be adopted as standard procedure.Comment: 19 pages (emulate-ApJ format), 16 figures, 5 tables, published in
ApJ. Modified to match ApJ versio
The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy
The multiplexing capability of slitless spectroscopy is a powerful asset in
creating large spectroscopic datasets, but issues such as spectral confusion
make the interpretation of the data challenging. Here we present a new method
to search for emission lines in the slitless spectroscopic data from the 3D-HST
survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope.
Using a novel statistical technique, we can detect compact (extended) emission
lines at 90% completeness down to fluxes of 1.5 (3.0) times 10^{-17}
erg/s/cm^2, close to the noise level of the grism exposures, for objects
detected in the deep ancillary photometric data. Unlike previous methods, the
Bayesian nature allows for probabilistic line identifications, namely redshift
estimates, based on secondary emission line detections and/or photometric
redshift priors. As a first application, we measure the comoving number density
of Extreme Emission Line Galaxies (restframe [O III] 5007 equivalent widths in
excess of 500 Angstroms). We find that these galaxies are nearly 10 times more
common above z~1.5 than at z<0.5. With upcoming large grism surveys such as
Euclid and WFIRST as well as grisms featuring prominently on the NIRISS and
NIRCam instruments on James Webb Space Telescope, methods like the one
presented here will be crucial for constructing emission line redshift catalogs
in an automated and well-understood manner.Comment: 16 pages, 14 Figures; Accepted to Ap
A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: The Group Catalog
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale
strong gravitational lenses, we identify groups of galaxies in the 26
adequately-sampled fields. Using a group finding algorithm, we find 210 groups
with at least five member galaxies; the median number of members is eight. Our
sample spans redshifts of 0.04 0.76 with a median of 0.31,
including 174 groups with . Groups have radial velocity
dispersions of 60 1200 km s with a median of 350
km s. We also discover a supergroup in field B0712+472 at 0.29
consisting of three main groups. We recover groups similar to 85% of
those previously reported in these fields within our redshift range of
sensitivity and find 187 new groups with at least five members. The properties
of our group catalog, specifically 1) the distribution of , 2)
the fraction of all sample galaxies that are group members, and 3) the fraction
of groups with significant substructure, are consistent with those for other
catalogs. The distribution of group virial masses agrees well with theoretical
expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434,
B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716,
MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723)
are members of groups with at least five galaxies, and one more (B0712+472)
belongs to an additional, visually identified group candidate. There are groups
not associated with the lens that still are likely to affect the lens model; in
six of 25 (24%) fields (excluding the supergroup), there is at least one
massive ( 500 km s) group or group candidate projected
within 2 of the lens.Comment: 87 pages, 8 figures, a version of this was published in Ap
- …
