2 research outputs found

    Aminoacyl-tRNA Substrate and Enzyme Backbone Atoms Contribute to Translational Quality Control by YbaK

    No full text
    Amino acids are covalently attached to their corresponding transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases. Proofreading mechanisms exist to ensure that high fidelity is maintained in this key step in protein synthesis. Prolyl-tRNA synthetase (ProRS) can misacylate cognate tRNA<sup>Pro</sup> with Ala and Cys. The <i>cis</i>-editing domain of ProRS (INS) hydrolyzes Ala-tRNA<sup>Pro</sup>, whereas Cys-tRNA<sup>Pro</sup> is hydrolyzed by a single domain editing protein, YbaK, <i>in trans</i>. Previous studies have proposed a model of substrate-binding by bacterial YbaK and elucidated a substrate-assisted mechanism of catalysis. However, the microscopic steps in this mechanism have not been investigated. In this work, we carried out biochemical experiments together with a detailed hybrid quantum mechanics/molecular mechanics study to investigate the mechanism of catalysis by Escherichia coli YbaK. The results support a mechanism wherein cyclization of the substrate Cys results in cleavage of the Cys-tRNA ester bond. Protein side chains do not play a significant role in YbaK catalysis. Instead, protein backbone atoms play crucial roles in stabilizing the transition state, while the product is stabilized by the 2′-OH of the tRNA

    Substrate and Enzyme Functional Groups Contribute to Translational Quality Control by Bacterial Prolyl-tRNA Synthetase

    No full text
    Aminoacyl-tRNA synthetases activate specific amino acid substrates and attach them via an ester linkage to cognate tRNA molecules. In addition to cognate proline, prolyl-tRNA synthetase (ProRS) can activate cysteine and alanine and misacylate tRNA<sup>Pro</sup>. Editing of the misacylated aminoacyl-tRNA is required for error-free protein synthesis. An editing domain (INS) appended to bacterial ProRS selectively hydrolyzes Ala-tRNA<sup>Pro</sup>, whereas Cys-tRNA<sup>Pro</sup> is cleared by a freestanding editing domain, YbaK, through a unique mechanism involving substrate sulfhydryl chemistry. The detailed mechanism of catalysis by INS is currently unknown. To understand the alanine specificity and mechanism of catalysis by INS, we have explored several possible mechanisms of Ala-tRNA<sup>Pro</sup> deacylation via hybrid QM/MM calculations. Experimental studies were also performed to test the role of several residues in the INS active site as well as various substrate functional groups in catalysis. Our results support a critical role for the tRNA 2′-OH group in substrate binding and catalytic water activation. A role is also proposed for the protein’s conserved GXXXP loop in transition state stabilization and for the main chain atoms of Gly261 in a proton relay that contributes substantially to catalysis
    corecore