53 research outputs found

    Association of the Chromosome Replication Initiator DnaA with the Escherichia coli Inner Membrane In Vivo: Quantity and Mode of Binding

    Get PDF
    DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein’s domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication

    A Selective Biomimetic Tweezer for Noradrenaline

    No full text

    Prevention of Alzheimer's disease-associated Abeta aggregation by rationally designed nonpeptidic beta-sheet ligands.

    No full text
    A new concept is introduced for the rational design of β-sheet ligands, which prevent protein aggregation. Oligomeric acylated aminopyrazoles with a donor-acceptor-donor (DAD) hydrogen bond pattern complementary to that of a β-sheet efficiently block the solvent-exposed β-sheet portions in Aβ-(1–40) and thereby prevent formation of insoluble protein aggregates. Density gradient centrifugation revealed that in the initial phase, the size of Aβ aggregates was efficiently kept between the trimeric and 15-meric state, whereas after 5 days an additional high molecular weight fraction appeared. With fluorescence correlation spectroscopy (FCS) exactly those two, i.e. a dimeric aminopyrazole with an oxalyl spacer and a trimeric head-to-tail connected aminopyrazole, of nine similar aminopyrazole ligands were identified as efficient aggregation retardants whose minimum energy conformations showed a perfect complementarity to a β-sheet. The concentration dependence of the inhibitory effect of a trimeric aminopyrazole derivative allowed an estimation of the dissociation constant in the range of 10–5 m. Finally, electrospray ionization mass spectrometry (ESI-MS) was used to determine the aggregation kinetics of Aβ-(1–40) in the absence and in the presence of the ligands. From the comparable decrease in Aβ monomer concentration, we conclude that these β-sheet ligands do not prevent the initial oligomerization of monomeric Aβ but rather block further aggregation of spontaneously formed small oligomers. Together with the results from density gradient centrifugation and fluorescence correlation spectroscopy it is now possible to restrict the approximate size of soluble Aβ aggregates formed in the presence of both inhibitors from 3- to 15-mers
    • …
    corecore