2 research outputs found

    OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED

    Full text link
    [EN] We present a spectroscopic study of methane-ethane ice mixtures. We have grown CH4:C2H6 mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm(-3), respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm(-3). As far as we know this is the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level.Funds have been provided for this research from the Spanish MINECO, Project FIS2013-48087-C2-1-P and FIS2013-48087-C2-2-P. G.M. acknowledges MINECO PhD grant BES-2014-069355. We are grateful to M. A. Moreno, J. Rodriguez, and I. Tanarro for technical help and to V. J. Herrero and I. Tanarro for discussions and manuscript preparation.Molpeceres, G.; Satorre, MÁ.; Ortigoso, J.; MillĂĄn VerdĂș, C.; Escribano, R.; Mate, B. (2016). OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED. The Astrophysical Journal. 825(2). https://doi.org/10.3847/0004-637X/825/2/156S825
    corecore