6 research outputs found

    Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene

    Get PDF
    G.M.P. and E.C. contributed equally to this work. G.M.P. acknowledges the financial support from Fondazione Cariplo, grant no. 2018-0979. The authors thank the financial support from the EU Horizon 2020 Research and Innovation Programme under Grant Agreement No. 643238 (SYNCHRONICS). The authors also thank Dr. Daniele Viola for helping with the analysis of the TA data.The non‐covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo‐stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane.Fondazione Cariplo. Grant Number: 2018‐0979EU Horizon 2020 Research and Innovation Programme. Grant Number: 64323

    Incorporating a molecular antenna in diatom microalgae cells enhances photosynthesis

    Get PDF
    Diatom microalgae have great industrial potential as next-generation sources of biomaterials and biofuels. Effective scale-up of their production can be pursued by enhancing the efficiency of their photosynthetic process in a way that increases the solar-to-biomass conversion yield. A proof-of-concept demonstration is given of the possibility of enhancing the light absorption of algae and of increasing their efficiency in photosynthesis by in vivo incorporation of an organic dye which acts as an antenna and enhances cells’ growth and biomass production without resorting to genetic modification. A molecular dye (Cy5) is incorporated in Thalassiosira weissflogii diatom cells by simply adding it to the culture medium and thus filling the orange gap that limits their absorption of sunlight. Cy5 enhances diatoms’ photosynthetic oxygen production and cell density by 49% and 40%, respectively. Cy5 incorporation also increases by 12% the algal lipid free fatty acid (FFA) production versus the pristine cell culture, thus representing a suitable way to enhance biofuel generation from algal species. Time-resolved spectroscopy reveals Förster Resonance Energy Transfer (FRET) from Cy5 to algal chlorophyll. The present approach lays the basis for non-genetic tailoring of diatoms’ spectral response to light harvesting, opening up new ways for their industrial valorization

    Balanced-detection Raman induced Kerr effect microscopy

    No full text
    We introduce balanced-detection Raman-induced Kerr effect microscopy as a new powerful coherent Raman imaging technique, combining background-free detection with the absence of non-resonant background and linear dependence on sample concentration. © 2012 OSA

    Influence of Surface Chemistry on Water Absorption in Functionalized Germanane

    No full text
    The graphane analogues of group 14 are a unique family of 2D materials due to the necessity of a terminal ligand for stability. Here we highlight how changing the surface ligand can lead to nonobvious interactions with other chemical species. We show using XRD, FTIR, and TGA that GeCH3 reversibly absorbs water into the van der Waals space, whereas GeH does not intercalate water. Molecular dynamics and density functional theory simulations predict that water datively interacts with the Ge-C σ∗ pocket on the Ge framework, resulting in local structural distortions. Surprisingly, these distortions give rise to an intense above band gap luminescence state of 1.87 eV, with an average lifetime of hundreds of picoseconds. This work opens potential applications for exploiting surface functionalization chemistry of 2D materials to create membrane and separation technologies
    corecore