6 research outputs found

    Coronary stent healing in cancer patients: an optical coherence tomography perspective

    Get PDF
    Objective: This study assessed stent healing patterns and cardiovascular outcomes by optical coherence tomography (OCT) in cancer patients after drug-eluting stent (DES) placement.Background: Cancer treatment, owing to its cytotoxic and antiproliferative effects, could delay stent healing and increase stent thrombosis risk, especially when dual antiplatelet therapy (DAPT) is discontinued early for oncological treatment. OCT can assess stent endothelialization and other healing parameters, which may provide clinical guidance in these challenging scenarios.Methods: This single-center retrospective study enrolled all cancer patients who underwent OCT for assessment of vascular healing patterns after prior DES placement from November 2009 to November 2018. Primary study endpoints were stent healing parameters, including stent coverage, apposition, degree of expansion, neointimal hyperplasia heterogeneity, in-stent restenosis, stent thrombosis, and overall survival (OS).Results: A total of 67 patients were included in this study. Mean time between DES placement and OCT evaluation was 154 +/- 82 days. Stent healing matched published values for DES in non-cancer patients (P >= 0.063). At 1 year, the OS was 86% (95% confidence interval [CI]: 78-96%) with 0% incidence of acute coronary syndrome. Advanced cancers and active chemotherapies were associated with inferior OS (P = 0.024, hazard ratio [HR]: 3.50, 95% CI: 1.18-10.42 and P = 0.026, HR: 2.65, 95% CI: 1.13-6.22, respectively), while stent healing parameters were unassociated with OS. Forty-one patients (61%) had DAPT duration <= 6 months.Conclusions: Stent healing of contemporary DES appears similar in cancer and non-cancer patients. Cardiovascular risk of cancer patients after DES placement can be managed to facilitate timely cancer therapies, as the underlying malignancy and active chemotherapy ultimately determine survival.Cardiovascular Aspects of Radiolog

    Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci

    No full text
    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with similar to 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 x 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 x 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 x 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 x 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 x 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups
    corecore