40 research outputs found

    The effects of graded levels of concentrate supplementation on colour and lipid stability of beef from pasture finished late-maturing bulls

    Get PDF
    peer-reviewedFinishing late-maturing bulls on grass may alter the antioxidant/prooxidant balance leading to beef with higher susceptibility to lipid oxidation and a lower colour stability compared to bulls finished on cereal concentrates. In this context, lipid oxidation and colour stability of beef from late-maturing bulls finished on pasture, with or without concentrate supplements, or indoors on concentrate was assessed. Charolais or Limousin sired bulls (n = 48) were assigned to four production systems: (1) pasture only (P), (2) pasture plus 25% dietary DM intake as barley-based concentrate (PC25), (3) pasture plus 50% dietary DM intake as barley-based concentrate (PC50) or (4) a barley-based concentrate ration (C). Following slaughter and postmortem ageing, M. Longissimus thoracis et lumborum was subjected to simulated retail display (4°C, 1000 lux for 12 h out of 24 h) for 3, 7, 10 and 14 days in modified atmosphere packs (O2 : CO2; 80 : 20). Lipid oxidation was determined using the 2-thiobarbituric acid-reactive substances assay; α-tocopherol was determined by HPLC; fatty acid methyl esters were determined using Gas Chromatography. Using a randomised complete block design, treatment means were compared by either ANOVA or repeated measures ANOVA using the MIXED procedure of SAS. Total polyunsaturated fatty acid (PUFA) concentrations were not affected by treatment, n-3 PUFAs were higher (P < 0.001) and the ratio of n-6 to n-3 PUFAs was lower (P < 0.001) in muscle from P, PC25 and PC50 compared to C. α-Tocopherol concentration was higher in muscle from P compared to PC50 and C bulls (P = 0.001) and decreased (P < 0.001) in all samples by day 14. Lipid oxidation was higher in muscle from C compared to P bulls on day 10 and day 14 of storage (P < 0.01). Finishing on pasture without supplementation did not affect beef colour stability and led to lower lipid oxidation, possibly due to the higher α-tocopherol concentration compared to concentrate finished beef

    Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities

    Get PDF
    peer-reviewedGrowth in demand for foods with potentially beneficial effects on consumer health has motivated increased interest in developing strategies for improving the nutritional quality of ruminant-derived products. Manipulation of the rumen environment offers the opportunity to modify the lipid composition of milk and meat by changing the availability of fatty acids (FA) for mammary and intramuscular lipid uptake. Dietary supplementation with marine lipids, plant secondary compounds and direct-fed microbials has shown promising results. In this review, we have compiled information about their effects on the concentration of putative desirable FA (e.g. c9t11-CLA and vaccenic, oleic, linoleic and linolenic acids) in ruminal digesta, milk and intramuscular fat. Marine lipids rich in very long-chain n-3 polyunsaturated fatty acids (PUFA) efficiently inhibit the last step of C18 FA biohydrogenation (BH) in the bovine, ovine and caprine, increasing the outflow of t11-18:1 from the rumen and improving the concentration of c9t11-CLA in the final products, but increments in t10-18:1 are also often found due to shifts toward alternative BH pathways. Direct-fed microbials appear to favourably modify rumen lipid metabolism but information is still very limited, whereas a wide variety of plant secondary compounds, including tannins, polyphenol oxidase, essential oils, oxygenated FA and saponins, has been examined with varying success. For example, the effectiveness of tannins and essential oils is as yet controversial, with some studies showing no effects and others a positive impact on inhibiting the first step of BH of PUFA or, less commonly, the final step. Further investigation is required to unravel the causes of inconsistent results, which may be due to the diversity in active components, ruminant species, dosage, basal diet composition and time on treatments. Likewise, research must continue to address ways to mitigate negative side-effects of some supplements on animal performance (particularly, milk fat depression) and product quality (e.g. altered oxidative stability and shelf-life)

    Canonical discriminant analysis of the fatty acid profile of muscle to authenticate beef from grass-fed and other beef production systems: Model development and validation

    Get PDF
    peer-reviewedThe potential of diet-induced differences in the fatty acid profile of muscle to discriminate beef from different feeding systems and its potential use as an authentication tool was investigated. Three canonical discriminant models were built and validated using the fatty acid profile of beef from animals fed solely on pasture or cereal-based concentrates for 11 months or on various pasture/grass silage/concentrate combinations, including concentrates enriched with plant oils. Results indicated that models could successfully discriminate between grass-, partially grass- and concentrate-fed beef (accuracy = 99%) and between grass-fed beef and beef from animals supplemented with plant oils (accuracy = 96%). The approach also showed potential for distinguishing between beef from exclusively pasture-fed cattle and beef from cattle fed on pasture preceded by a period on ensiled grass (accuracy = 89%). Models were also applied to beef samples from 9 different countries. Of 97 international samples, including samples stated to be grass-fed, only 5% were incorrectly classified as Irish-grass-fed beef. These results suggested that the models captured traits in the fatty acid profile that are characteristic of Irish grass-fed beef and that this feature could be used for distinguishing Irish grass-fed beef from beef from other regions

    Life cycle assessment of pasture-based suckler steer weanling-to-beef production systems: Effect of breed and slaughter age

    Get PDF
    peer-reviewedDemand for beef produced from pasture-based diets is rising as it is perceived to be healthier, animal friendly and good for the environment. Animals reared on a solely grass forage diet, however, have a lower growth rate than cereal-fed animals and consequently are slaughtered at an older age. This study focused on the former by conducting life cycle assessments of beef production systems offering only fresh or conserved grass, and comparing them to a conventional pasture-based beef production system offering concentrate feeding during housing. The four suckler weanling-to-beef production systems simulated were: (i) Steers produced to slaughter entirely on a grass forage diet at 20 months (GO-20); (ii) Steers produced to slaughter entirely on a grass forage diet at 24 months (GO-24); (iii) Steers produced to slaughter on a grass forage diet with concentrate supplementation during housing (GC-24), and (iv) Steers produced to slaughter entirely on a grass forage diet at 28 months (GO-28). Two breed types were evaluated: early-maturing and late-maturing (LM). The environmental impacts assessed were global warming potential (GWP), non-renewable energy (NRE), acidification potential (AP), eutrophication potential (marine (MEP) and freshwater) were expressed per animal, per kg live weight gain (LWG), kg carcass weight gain, and kg meat weight gain (MWG). The GO-20 production system had the lowest environmental impact across all categories and functional units for both breeds. Extending age at slaughter increased environmental impact across all categories per animal. The LWG response of EM steers to concentrate feed supplementation in GC-24 was greater than the increase in total environmental impact resulting in GC-24 having a lower environmental impact across categories per kg product than GO-24. Concentrate feed supplementation had a similar effect on LM steers with the exception of NRE and AP. The increase in daily LWG in the third grazing season in comparison to the second grazing and housing resulted in GO-28 having lower GWP, NRE, AP, and MEP per kg product than GO-24. Early-maturing steers had lower environmental impact than LM when expressed per kg LWG. However the opposite occurred when impacts were expressed per kg MWG, despite LM steers producing the least LWG. The LM steers compensated for poor LWG performance by having superior carcass traits, which caused the breed to have the lowest environmental impact per kg MWG. The results reaffirms the importance of functional unit and suggests reducing the environmental impact of LWG does not always translate into improvements in the environmental performance of meat

    Consumer assessment, in Ireland and the United Kingdom, of the impact of the method of suspension of carcasses from dairy-origin bulls and steers, on the sensory characteristics of the longissimus muscle

    Get PDF
    The objective was to compare the assessment of beef produced in Ireland from a 19-month bull or a 24-month steer dairy beef production system by consumers in Ireland (Cork) and the United Kingdom (Belfast and Reading). Carcass sides were suspended by the Achilles tendon or by the pelvic bone and 21-d aged longissimus muscle assessed using Meat Standards Australia protocols. Carcass weight and classification were similar for bulls and steers. Consumers in Belfast and Cork rated aroma liking, tenderness, juiciness, overall liking and the composite meat quality score (MQ4) similarly, but lower (P < 0.05) than consumers in Reading. Consumers in Belfast and Cork rated flavour liking similarly as did consumers in Cork and Reading, but consumers in Reading rated flavour liking higher (P < 0.05) than consumers in Belfast. Muscle from steers had higher scores for aroma liking, flavour liking, overall liking and MQ4 scores than bulls (P < 0.05). On average, pelvic suspension increased (P < 0.05) the scores for aroma liking and flavour liking compared with conventional suspension but increased (P < 0.05) tenderness, juiciness, overall liking and MQ4 scores only in bulls. Consumers in Reading rated striploin from the traditional Achilles tendon-suspended steers similarly to striploin from pelvic-suspended bulls (MQ4 score of 71.8 and 68.2, respectively). Beef from the latter system could replace the traditional steer beef in this market, thereby benefiting the beef producer and the environment

    Quality of three muscles from suckler bulls finished on concentrates and slaughtered at 16 months of age or slaughtered at 19 months of age from two production systems

    Get PDF
    peer-reviewedThere is a requirement in some beef markets to slaughter bulls at under 16 months of age. This requires high levels of concentrate feeding. Increasing the slaughter age of bulls to 19 months facilitates the inclusion of a grazing period, thereby decreasing the cost of production. Recent data indicate few quality differences in longissimus thoracis (LT) muscle from conventionally reared 16-month bulls and 19-month-old bulls that had a grazing period prior to finishing on concentrates. The aim of the present study was to expand this observation to additional commercially important muscles/cuts. The production systems selected were concentrates offered ad libitum and slaughter at under 16 months of age (16-C) or at 19 months of age (19-CC) to examine the effect of age per se, and the cheaper alternative for 19-month bulls described above (19-GC). The results indicate that muscles from 19-CC were more red, had more intramuscular fat and higher cook loss than those from 16-C. No differences in muscle objective texture or sensory texture and acceptability were found between treatments. The expected differences in composition and quality between the muscles were generally consistent across the production systems examined. Therefore, for the type of animal and range of ages investigated, the effect of the production system on LT quality was generally representative of the effect on the other muscles analysed. In addition, the data do not support the under 16- month age restriction, based on meat acceptability, in commercial suckler bull production

    Biochemical and organoleptic characteristics of muscle from early and late maturing bulls in different production systems

    Get PDF
    In grass-based beef production systems (PS), early maturing (EM) breed types may be preferable to late maturing (LM) breed types in achieving adequate carcass fat cover. Biochemical and organoleptic characteristics of muscle from suckler bulls were investigated in EM and LM (n = 28/breed) assigned to one of two PS (ad libitum concentrates and grass silage to slaughter (C) or ad libitum silage plus 2 kg concentrate daily during winter followed by 99 days at pasture and then an indoor finishing period on C (GSPC)) in a 2 breed type x 2 PS factorial arrangement of treatments. Bulls were managed to have a common target carcass weight of 380 kg. Intramuscular fat (IMF) content was higher (P < 0.05) for EM than LM, and for C than GSPC bulls. Collagen solubility was higher (P < 0.05) for C than GSPC bulls. Lactate dehydrogenase (LDH) and phosphofructokinase activities were higher (P < 0.05) for LM than EM. Isocitrate dehydrogenase activity and the Type I myosin heavy chain (MyHC) proportion were higher (P < 0.05) for EM than LM. The LDH activity and the Type IIX MyHC proportion were higher (P < 0.05) for C than GSPC bulls. Sensory ratings for tenderness and juiciness were higher (P < 0.01) for beef from EM than LM while sensory ratings for tenderness, flavour liking and overall liking were higher (P < 0.001) for C than for GSPC bulls. Differences in sensory quality were largely eliminated when adjusted for IMF. Overall, carcass fat scores, IMF and sensory scores were higher in EM than LM and in C than GSPC bulls but most differences in sensory quality could be attributed to differences in IMF

    The Physics of the B Factories

    Get PDF
    corecore