98 research outputs found

    Vancomycin gene selection in the microbiome of urban <i>Rattus norvegicus</i> from hospital environment

    Get PDF
    Background and objectives: Widespread use of antibiotics has resulted in selection pressure on genes that make bacteria non-responsive to antibiotics. These antibiotic-resistant bacteria are currently a major threat to global health. There are various possibilities for the transfer of antibiotic resistance genes. It has been argued that animal vectors such as Rattus norvegicus (R. norvegicus) living in hospital sewage systems are ideal for carrying pathogens responsible for fatal diseases in humans. Methodology: Using a metagenomic sequencing approach, we investigated faecal samples of R. norvegicus from three major cities for the presence of antibiotic resistance genes. Results: We show that despite the shared resistome within samples from the same geographic locations, samples from hospital area carry significantly abundant vancomycin resistance genes. Conclusions and implications: The observed pattern is consistent with a selection for vancomycin genes in the R. norvegicus microbiome, potentially driven by the outflow of antibiotics and antibiotic-resistant bacteria into the wastewater systems. Carriage of vancomycin resistance may suggest that R. norvegicus is acting as a reservoir for possible transmission to the human population

    Target-dependent enrichment of virions determines the reduction of high-throughput sequencing in virus discovery

    Get PDF
    Viral infections cause many different diseases stemming both from well-characterized viral pathogens but also from emerging viruses, and the search for novel viruses continues to be of great importance. High-throughput sequencing is an important technology for this purpose. However, viral nucleic acids often constitute a minute proportion of the total genetic material in a sample from infected tissue. Techniques to enrich viral targets in high-throughput sequencing have been reported, but the sensitivity of such methods is not well established. This study compares different library preparation techniques targeting both DNA and RNA with and without virion enrichment. By optimizing the selection of intact virus particles, both by physical and enzymatic approaches, we assessed the effectiveness of the specific enrichment of viral sequences as compared to non-enriched sample preparations by selectively looking for and counting read sequences obtained from shotgun sequencing. Using shotgun sequencing of total DNA or RNA, viral targets were detected at concentrations corresponding to the predicted level, providing a foundation for estimating the effectiveness of virion enrichment. Virion enrichment typically produced a 1000-fold increase in the proportion of DNA virus sequences. For RNA virions the gain was less pronounced with a maximum 13-fold increase. This enrichment varied between the different sample concentrations, with no clear trend. Despite that less sequencing was required to identify target sequences, it was not evident from our data that a lower detection level was achieved by virion enrichment compared to shotgun sequencing

    <i>Propionibacterium acnes: </i>disease-causing agent or common contaminant? Detection in diverse patient samples by next generation sequencing

    Get PDF
    Propionibacterium acnes is the most abundant bacterium on human skin, particularly in sebaceous areas. P. acnes is suggested to be an opportunistic pathogen involved in the development of diverse medical conditions but is also a proven contaminant of human clinical samples and surgical wounds. Its significance as a pathogen is consequently a matter of debate. In the present study, we investigated the presence of P. acnes DNA in 250 next-generation sequencing data sets generated from 180 samples of 20 different sample types, mostly of cancerous origin. The samples were subjected to either microbial enrichment, involving nuclease treatment to reduce the amount of host nucleic acids, or shotgun sequencing. We detected high proportions of P. acnes DNA in enriched samples, particularly skin tissue-derived and other tissue samples, with the levels being higher in enriched samples than in shotgun-sequenced samples. P. acnes reads were detected in most samples analyzed, though the proportions in most shotgun-sequenced samples were low. Our results show that P. acnes can be detected in practically all sample types when molecular methods, such as next-generation sequencing, are employed. The possibility of contamination from the patient or other sources, including laboratory reagents or environment, should therefore always be considered carefully when P. acnes is detected in clinical samples. We advocate that detection of P. acnes always be accompanied by experiments validating the association between this bacterium and any clinical condition
    • …
    corecore