139 research outputs found

    Proteomics in Molecular Diagnosis: Typing of Amyloidosis

    Get PDF
    Amyloidosis is a group of disorders caused by deposition of misfolded proteins as aggregates in the extracellular tissues of the body, leading to impairment of organ function. Correct identification of the causal amyloid protein is absolutely crucial for clinical management in order to avoid misdiagnosis and inappropriate, potentially harmful treatment, to assess prognosis and to offer genetic counselling if relevant. Current diagnostic methods, including antibody-based amyloid typing, have limited ability to detect the full range of amyloid forming proteins. Recent investigations into proteomic identification of amyloid protein have shown promise. This paper will review the current state of the art in proteomic analysis of amyloidosis, discuss the suitability of techniques based on the properties of amyloidosis, and further suggest potential areas of development. Establishment of mass spectrometry aided amyloid typing procedures in the pathology laboratory will allow accurate amyloidosis diagnosis in a timely manner and greatly facilitate clinical management of the disease

    Guidelines for high dose chemotherapy and stem cell transplantation for systemic AL amyloidosis: EHA-ISA working group guidelines

    Get PDF
    AL amyloidosis is a systemic amyloidosis and is associated with an underlying plasma cell dyscrasia. High dose intravenous melphalan and autologous stem cell transplantation was developed for the treatment of AL amyloidosis in the early 1990s and was prompted by its success in multiple myeloma. This application has evolved significantly over the past three decades. These guidelines provide a comprehensive assessment of eligibility criteria, stem cell collection and mobilisation strategies and regimens, risk-adapted melphalan dosing, role for induction and consolidation therapies, specific supportive care management, long-term outcome with respect to survival, haematologic response and relapse and organ responses following stem cell transplantation. These guidelines are developed by the experts in the field on behalf of the stem cell transplant working group of the International Society of Amyloidosis (ISA) and European Haematology Association (EHA)

    Renal impairment at diagnosis in myeloma: Patient characteristics, treatment, and impact on outcomes. Results trom the Australia and New Zealand myeloma and related diseases registry

    Get PDF
    Background: Renal impairment (RI) is a common complication of multiple myeloma (MM) and remains a poor prognostic factor despite improved survival with newer therapies. Patients and Methods: We evaluated baseline characteristics, treatment, and outcomes of newly diagnosed MM patients with RI at diagnosis in the Australia and New Zealand Myeloma and Related Diseases Registry over 5 years to April 2018; we compared patients with RI (estimated glomerular filtration rate [eGFR

    Response to rituximab induction is a predictive marker in B-cell post-transplant lymphoproliferative disorder and allows successful stratification into rituximab or r-chop consolidation in an international, prospective, multicenter Phase II trial

    Get PDF
    Purpose The Sequential Treatment of CD20-Positive Posttransplant Lymphoproliferative Disorder (PTLD-1) trial ( ClinicalTrials.gov identifier, NCT01458548) established sequential treatment with four cycles of rituximab followed by four cycles of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy as a standard in the management of post-transplant lymphoproliferative disorder (PTLD) and identified response to rituximab induction as a prognostic factor for overall survival. We hypothesized that rituximab consolidation might be sufficient treatment for patients with a complete response after rituximab induction. Patients and Methods In this prospective, international, multicenter phase II trial, 152 treatment-naive adult solid organ transplant recipients, with CD20+ PTLD unresponsive to immunosuppression reduction, were treated with four weekly doses of rituximab induction. After restaging, complete responders continued with four courses of rituximab consolidation every 21 days; all others received four courses of rituximab plus CHOP chemotherapy every 21 days. The primary end point was treatment efficacy measured as the response rate in patients who completed therapy and the response duration in those who completed therapy and responded. Secondary end points were frequency of infections, treatment-related mortality, and overall survival in the intention-to-treat population. Results One hundred eleven of 126 patients had a complete or partial response (88%; 95% CI, 81% to 93%), of whom 88 had a complete response (70%; 95% CI, 61% to 77%). Median response duration was not reached. The 3-year estimate was 82% (95% CI, 74% to 90%). Median overall survival was 6.6 years (95% CI, 5.5 to 7.6 years). The frequency of grade 3 or 4 infections and of treatment-related mortality was 34% (95% CI, 27% to 42%) and 8% (95% CI, 5% to 14%), respectively. Response to rituximab induction remained a prognostic factor for overall survival despite treatment stratification. Conclusion In B-cell PTLD, treatment stratification into rituximab or rituximab plus CHOP consolidation on the basis of response to rituximab induction is feasible, safe, and effective

    Pomalidomide – author reply

    No full text

    Increased Lipid Concentration Is Associated with Increased Hemolysis

    No full text
    corecore