151 research outputs found

    Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase

    Get PDF
    ERK5 is a mitogen-activated protein (MAP) kinase regulated in human cells by diverse mitogens and stresses but also suspected of mediating the effects of a number of oncogenes. Its expression in the slt2Delta Saccharomyces cerevisiae mutant rescued several of the phenotypes caused by the lack of Slt2p (Mpk1p) cell integrity MAP kinase. ERK5 is able to provide this cell integrity MAP kinase function in yeast, as it is activated by the cell integrity signaling cascade that normally activates Slt2p and, in its active form, able to stimulate at least one key Slt2p target (Rlm1p, the major transcriptional regulator of cell wall genes). In vitro ERK5 kinase activity was abolished by Hsp90 inhibition. ERK5 activity in vivo was also lost in a strain that expresses a mutant Hsp90 chaperone. Therefore, human ERK5 expressed in yeast is an Hsp90 client, despite the widely held belief that the protein kinases of the MAP kinase class are non-Hsp90-dependent activities. Two-hybrid and protein binding studies revealed that strong association of Hsp90 with ERK5 requires the dual phosphorylation of the TEY motif in the MAP kinase activation loop. These phosphorylations, at positions adjacent to the Hsp90-binding surface recently identified for a number of protein kinases, may cause a localized rearrangement of this MAP kinase region that leads to creation of the Hsp90-binding surface. Complementation of the slt2Delta yeast defect by ERK5 expression establishes a new tool with which to screen for novel agonists and antagonists of ERK5 signaling as well as for isolating mutant forms of ERK5

    Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity

    Get PDF
    The molecular chaperone Heat shock protein 90 (Hsp90) is essential for the folding, stability, and activity of several drivers of oncogenesis. Hsp90 inhibitors are currently under clinical evaluation for cancer treatment, however their efficacy is limited by lack of biomarkers to optimize patient selection. We have recently identified the tumor suppressor tuberous sclerosis complex 1 (Tsc1) as a new co-chaperone of Hsp90 that affects Hsp90 binding to its inhibitors. Highly variable mutations of TSC1 have been previously identified in bladder cancer and correlate with sensitivity to the Hsp90 inhibitors. Here we showed loss of TSC1 leads to hypoacetylation of Hsp90-K407/K419 and subsequent decreased binding to the Hsp90 inhibitor ganetespib. Pharmacologic inhibition of histone deacetylases (HDACs) restores acetylation of Hsp90 and sensitizes Tsc1-mutant bladder cancer cells to ganetespib, resulting in apoptosis. Our findings suggest that TSC1 status may predict response to Hsp90 inhibitors in patients with bladder cancer, and co-targeting HDACs can sensitize tumors with Tsc1 mutations to Hsp90 inhibitors

    A Systematic Protocol for the Characterization of Hsp90 Modulators

    Get PDF
    This is the author's accepted manuscript. Made available by the permission of the publisher.Several Hsp90 modulators have been identified including the N-terminal ligand geldanamycin (GDA), the C-terminal ligand novobiocin (NB), and the co-chaperone disruptor celastrol. Other Hsp90 modulators elicit a mechanism of action that remains unknown. For example, the natural product gedunin and the synthetic anti-spermatogenic agent H2-gamendazole, recently identified Hsp90 modulators, manifest biological activity through undefined mechanisms. Herein, we report a series of biochemical techniques used to classify such modulators into identifiable categories. Such studies provided evidence that gedunin and H2-gamendazole both modulate Hsp90 via a mechanism similar to celastrol, and unlike NB or GDA

    The genome sequence of the highly acetic acid-tolerant zygosaccharomyces bailii-derived interspecies hybrid strain ISA1307, isolated from a sparkling wine plant

    Get PDF
    In this work, it is described the sequencing and annotation of the genome of the yeast strain ISA1307, isolated from a sparkling wine continuous production plant. This strain, formerly considered of the Zygosaccharomyces bailii species, has been used to study Z. bailii physiology, in particular, its extreme tolerance to acetic acid stress at low pH. The analysis of the genome sequence described in this work indicates that strain ISA1307 is an interspecies hybrid between Z. bailii and a closely related species. The genome sequence of ISA1307 is distributed through 154 scaffolds and has a size of around 21.2 Mb, corresponding to 96% of the genome size estimated by flow cytometry. Annotation of ISA1307 genome includes 4385 duplicated genes (~90% of the total number of predicted genes) and 1155 predicted single-copy genes. The functional categories including a higher number of genes are 'Metabolism and generation of energy', 'Protein folding, modification and targeting' and 'Biogenesis of cellular components'. The knowledge of the genome sequence of the ISA1307 strain is expected to contribute to accelerate systems-level understanding of stress resistance mechanisms in Z. bailii and to inspire and guide novel biotechnological applications of this yeast species/strain in fermentation processes, given its high resilience to acidic stress. The availability of the ISA1307 genome sequence also paves the way to a better understanding of the genetic mechanisms underlying the generation and selection of more robust hybrid yeast strains in the stressful environment of wine fermentations.This research was supported by FCT and FEDER through POFC-COMPETE [contracts PEst-OE/EQB/ LA0023/2011_ research line: Systems and Synthetic Biology PTDC/AGR-ALI/102608/2008, PEst-C/BIA/ UI4050/2011, and post-doctoral grant to M.P. (SFRH/BPD/73306/2010) and PhD grants to J.F.G. (SFRH/ BD/80065/2011) and F.C.R. (SFRH/BD/82226/2011)]. U.G. acknowledges the Austrian Science Fund (FWF, special research project F3705)

    Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1

    Get PDF
    Complex conformational dynamics are essential for function of the dimeric molecular cha- perone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimer- ization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90

    Glioblastoma cancer stem cell biology: Potential theranostic targets

    Get PDF
    Glioblastoma multiforme (GBM) is among the most incurable cancers. GBMs survival rate has not markedly improved, despite new radical surgery protocols, the introduction of new anticancer drugs, new treatment protocols, and advances in radiation techniques. The low efficacy of therapy, and short interval between remission and recurrence, could be attributed to the resistance of a small fraction of tumorigenic cells to treatment. The existence and importance of cancer stem cells (CSCs) is perceived by some as controversial. Experimental evidences suggest that the presence of therapy-resistant glioblastoma stem cells (GSCs) could explain tumor recurrence and metastasis. Some scientists, including most of the authors of this review, believe that GSCs are the driving force behind GBM relapses, whereas others however, question the existence of GSCs. Evidence has accumulated indicating that non-tumorigenic cancer cells with high heterogeneity, could undergo reprogramming and become GSCs. Hence, targeting GSCs as the �root cells� initiating malignancy has been proposed to eradicate this devastating disease. Most standard treatments fail to completely eradicate GSCs, which can then cause the recurrence of the disease. To effectively target GSCs, a comprehensive understanding of the biology of GSCs as well as the mechanisms by which these cells survive during treatment and develop into new tumor, is urgently needed. Herein, we provide an overview of the molecular features of GSCs, and elaborate how to facilitate their detection and efficient targeting for therapeutic interventions. We also discuss GBM classifications based on the molecular stem cell subtypes with a focus on potential therapeutic approaches. © 201

    Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients

    Get PDF
    The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat-shock protein 90 (Hsp90) is an essen- tial component of the cellular homeostatic machinery in eukary- otes. Here, we show that Tsc1 is a new co-chaperone for Hsp90 that inhibits its ATPase activity. The C-terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co- chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1-Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co-chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilita- tor of Hsp90-mediated folding of kinase and non-kinase clients— including Tsc2—thereby preventing their ubiquitination and proteasomal degradation

    Glioblastoma cancer stem cell biology: Potential theranostic targets

    Get PDF
    Glioblastoma multiforme (GBM) is among the most incurable cancers. GBMs survival rate has not markedly improved, despite new radical surgery protocols, the introduction of new anticancer drugs, new treatment protocols, and advances in radiation techniques. The low efficacy of therapy, and short interval between remission and recurrence, could be attributed to the resistance of a small fraction of tumorigenic cells to treatment. The existence and importance of cancer stem cells (CSCs) is perceived by some as controversial. Experimental evidences suggest that the presence of therapy-resistant glioblastoma stem cells (GSCs) could explain tumor recurrence and metastasis. Some scientists, including most of the authors of this review, believe that GSCs are the driving force behind GBM relapses, whereas others however, question the existence of GSCs. Evidence has accumulated indicating that non-tumorigenic cancer cells with high heterogeneity, could undergo reprogramming and become GSCs. Hence, targeting GSCs as the �root cells� initiating malignancy has been proposed to eradicate this devastating disease. Most standard treatments fail to completely eradicate GSCs, which can then cause the recurrence of the disease. To effectively target GSCs, a comprehensive understanding of the biology of GSCs as well as the mechanisms by which these cells survive during treatment and develop into new tumor, is urgently needed. Herein, we provide an overview of the molecular features of GSCs, and elaborate how to facilitate their detection and efficient targeting for therapeutic interventions. We also discuss GBM classifications based on the molecular stem cell subtypes with a focus on potential therapeutic approaches. © 201

    The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding

    Get PDF
    The ability of Heat Shock Protein 90 (Hsp90) to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific "client" proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes involved in maintaining the stability and activity of numerous signalling proteins, also known as clients. Hsp90 ATPase activity is essential for its chaperone function and it is regulated by co-chaperones. Here we show that the tumour suppressor FLCN is an Hsp90 client protein and its binding partners FNIP1/FNIP2 function as co-chaperones. FNIPs decelerate the chaperone cycle, facilitating FLCN interaction with Hsp90, consequently ensuring FLCN stability. FNIPs compete with the activating co-chaperone Aha1 for binding to Hsp90, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. Lastly, downregulation of FNIPs desensitizes cancer cells to Hsp90 inhibitors, whereas FNIPs overexpression in renal tumours compared with adjacent normal tissues correlates with enhanced binding of Hsp90 to its inhibitors. Our findings suggest that FNIPs expression can potentially serve as a predictive indicator of tumour response to Hsp90 inhibitors
    • …
    corecore