7 research outputs found

    When Double is not Twice as Much

    Get PDF
    Gene and genome duplications provide a playground for various selective pressures and contribute significantly to genome complexity. It is assumed that the genomes of all major eukaryotic lineages possess duplicated regions that result from gene and genome duplication. There is evidence that the model plant Arabidopsis has been subjected to at least three whole-genome duplication events over the last 150–200 million years. As a result, many cellular processes are governed by redundantly acting gene families. Plants pass through two distinct life phases with a haploid gametophytic alternating with a diploid sporophytic generation. This ontogenetic difference in gene copy number has important implications for the outcome of deleterious mutations, which are masked by the second gene copy in diploid systems but expressed in a dominant fashion in haploid organisms. As a consequence, maintaining the activity of duplicated genes might be particularly advantageous during the haploid gametophytic generation. Here, we describe the distinctive features associated with the alteration of generations and discuss how activity profiles of duplicated genes might get modulated in a life phase dependent fashion

    The Nature, Causes, and Clinical Impact of Errors in the Clinical Laboratory Testing Process Leading to Diagnostic Error:A Voluntary Incident Report Analysis

    Get PDF
    OBJECTIVES: Diagnostic errors, that is, missed, delayed, or wrong diagnoses, are a common type of medical errors and preventable iatrogenic harm. Errors in the laboratory testing process can lead to diagnostic errors. This retrospective analysis of voluntary incident reports aimed to investigate the nature, causes, and clinical impact of errors, including diagnostic errors, in the clinical laboratory testing process. METHODS: We used a sample of 600 voluntary incident reports concerning diagnostic testing selected from all incident reports filed at the University Medical Center Utrecht in 2017-2018. From these incident reports, we included all reports concerning the clinical laboratory testing process. For these incidents, we determined the following: nature: in which phase of the testing process the error occurred; cause: human, technical, organizational; and clinical impact: the type and severity of the harm to the patient, including diagnostic error. RESULTS: Three hundred twenty-seven reports were included in the analysis. In 77.1%, the error occurred in the preanalytical phase, 13.5% in the analytical phase and 8.0% in the postanalytical phase (1.5% undetermined). Human factors were the most frequent cause (58.7%). Severe clinical impact occurred relatively more often in the analytical and postanalytical phase, 32% and 28%, respectively, compared with the preanalytical phase (40%). In 195 cases (60%), there was a potential diagnostic error as consequence, mainly a potential delay in the diagnostic process (50.5%). CONCLUSIONS: Errors in the laboratory testing process often lead to potential diagnostic errors. Although prone to incomplete information on causes and clinical impact, voluntary incident reports are a valuable source for research on diagnostic error related to errors in the clinical laboratory testing process.</p

    3D Cultivation Techniques for Primary Human Hepatocytes

    Get PDF
    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device

    3D Cultivation Techniques for Primary Human Hepatocytes

    Get PDF
    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly devic
    corecore